CMR biểu thức sau luôn nhận gt dương với mọi giá trị của x và y:
Q=5x2+2y2+4xy-2x+4y+2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chu vi hcn là 4/5 chiều rong bang 4/5 chieu dai . tinh dien tích hcn
giúp mình nha
\(48-4y^2-4y\)
\(=52-\left(4y^2+4y+4\right)\)
\(=\sqrt{52}^2-\left(2y+2\right)^2\)
\(=\left(\sqrt{52}-2y-2\right)\left(\sqrt{52}+2y+2\right)\)
\(48-4y^2-4y\)
\(=-\left(4y^2+4y-48\right)\)
\(=-\left(4y^2+4y+1-49\right)\)
\(=-\left[\left(2y+1\right)^2-7^2\right]\)
\(=-\left(2y+1-7\right)\left(2y+1+7\right)\)
\(=-\left(2y-6\right)\left(2y+8\right)\)
\(=-4\left(y-3\right)\left(y+4\right)\)
\(\left|x+1\right|+\left|x^2+4x+3\right|=x^3+1\)
\(\Leftrightarrow\left|x+1\right|+\left|x^2+4x+3\right|-x^3-1=0\)
\(\Leftrightarrow\left|x+1\right|+\left|\left(x+1\right)\left(x+3\right)\right|-x^3-1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
Vậy nghiệm phương trình là: {-1; -3}
\(Q=5x^2+2y^2+4xy+2x+4y+2009\)
\(Q=\left(4x^2+4xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+2004\)
\(Q=\left(2x+y\right)^2+\left(x+1\right)^2+\left(y+2\right)^2+2004>0\) với \(\forall x\)
chu vi hình chữ nhật là 4/5 . chiều rộng bang 4/5 chiềudài . tính diẹn tích hình chữ nhật đó