Tìm GTLN:
\(A=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a và b bạn tích ra các số còn lai rồi nhân lại bằng máy tính là được mà bạn^^
a)\(\Leftrightarrow\)\(7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow\) \(3\sqrt{x-2}=8\)
\(\Leftrightarrow\) \(\sqrt{x-2}=24\)
\(\Leftrightarrow\)\(x-2=576\)\(\Leftrightarrow x=578\)
c)\(\Leftrightarrow GTTĐ\left(x-1\right)=\sqrt{2}-1\)\(TH1:x-1>0\)
\(\Rightarrow x-1=\sqrt{2}-1\)\(\Leftrightarrow x=\sqrt{2}\)
\(TH2:x-1< 0\)
\(\Rightarrow1-x=\sqrt{2}-1\)
\(\Leftrightarrow x=2+\sqrt{2}\)
d)\(TH1:x-10=0\Rightarrow x=10\)
\(TH2:\sqrt{x-4}=0\Rightarrow x=4\)
câu b) thì mik cần thêm time
Đặt \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(\Rightarrow A^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2\)
\(=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}2-\sqrt{3}\)
\(=4-2\sqrt{1}\)
\(=2\)
\(\Rightarrow A=\sqrt{2}\)( VÌ \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}>0\))
Bài này cs nhiều cách lm nha bn!!
Đặt : \(A=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(\sqrt{2}A=\sqrt{2}\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)\)
\(=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=|\sqrt{3}+1|-|\sqrt{3}-1|\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2\)
\(\Rightarrow A=\frac{2}{\sqrt{2}}=\sqrt{2}\)
=.= hok tốt!!
a/ \(B=\frac{1+x}{1+\sqrt{x}+x}\)
b/ Giải phương trình bậc 2 thì dễ rồi ha
c/ \(\frac{1+x}{1+\sqrt{x}+x}>\frac{2}{3}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)đung vì x khac 1
Phương trình bậc hai là\(x-\sqrt{6x}+1=0\) thì giải làm sao bạn ơi??
Xửa đề thành tìm nghiệm nguyên rồi làm
\(x^2+xy-2008x-2009y-2010=0\)
\(\Leftrightarrow\left(x-2009\right)\left(x+y+1\right)=1\)
làm nôt
a) Ta có:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2b^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) theo a) \(\Rightarrow\)\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Dấu bằng xảy ra khi ad=bc => a/b=c/d
a,\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b,Xét hiệu
\(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^2=\left(ad-bc\right)^2\ge0\)
\(\Rightarrow\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Đặt \(2018=a\)
\(\Rightarrow\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}=\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}=\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2019\)
\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)
\(\Leftrightarrow\sqrt{\frac{x^2+2x\sqrt{1-x^2}+1-x^2}{2}}=1-2x^2\)
\(\Leftrightarrow\sqrt{\frac{\left(x+\sqrt{1-x^2}\right)^2}{2}}=1-2x^2\)
\(\Leftrightarrow\frac{x+\sqrt{1-x^2}}{\sqrt{2}}=1-2x^2\)
Làm nôt