phân tích đa thức thành nhân tử:
A=(x-1)(x-2)(x-3)+(x-1)(x-2)-(x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt tương đương:
\(2\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+3\)
Có: \(\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{3\cdot3\left(xyz\right)^2}=3\)
Đồng thời:
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z\le\sqrt{\left(x+y+z\right)^2}\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
Rồi cộng lại
a) (x - 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x4 - 1)(x4 + 1)(x8 + 1)
= (x8 - 1)(x8 + 1)
= x16 - 1
b) (a2 - 2b)(a2 + 2b)(a4 + 4b2)(a8 + 16b4)
= (a4 - 4b2)(a4 + 4b2)(a8 + 16b4)
= (a8 - 16b4)(a8 + 16b4)
= a16 - 256b8
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1
a.Goi BE,CG,AK la duong cao cua tam giac ABC\(\left(E\in AC,K\in BC,G\in AB\right)\)
Xet 2 tam giac vuong HKC va DKC ta co:
HK=DK(H doi xung voi D qua BC)
KC la canh chung
Do do:\(\Delta HKC=\Delta DKC\left(c-g-c\right)\)
Xet 2 tam giac vuong HKB va DKB ta co:
HK=DK(H doi xung voi D qua BC)
BK la canh chung
Do do:\(\Delta HKB=\Delta DKB\left(c-g-c\right)\)
Suy ra:\(\Delta HKB+\Delta HKC=\Delta KDB+\Delta KDC\left(1\right)\)
Ma:
\(\Delta BHC=\Delta HKB+\Delta HKC\left(2\right)\)
\(\Delta BDC=\Delta KDB+\Delta KDC\left(3\right)\)
Tu (1),(2) va (3) suy ra:\(\Delta BHC=\Delta BDC\)
b.Xet tam giac AGC ta co:\(\widehat{ACG}=40^0\)
Suy ra:\(\widehat{EHC}=50^0\)
Ma:\(\widehat{GHC}=\widehat{GHE}+\widehat{EHC}=180^0\)
\(\Rightarrow\widehat{GHE}=180^0-\widehat{EHC}=180^0-50^0=130^0\)
Hay \(\widehat{BHC}=130^0\)(\(\widehat{GHE}\)doi dinh \(\widehat{BHC}\))
Theo cau a ta co:\(\Delta BHC=\Delta BDC\)
Suy ra: \(\widehat{BHC}=\widehat{BDC}\)(2 goc tuong ung)
\(\Rightarrow\widehat{BDC}=130^0\)
a﴿ Kẻ BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
: AB = BC ; góc BNA = 180 độ
‐ góc BAD = 70 độ
nên góc BAN = góc BCD = 70 độ
=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿
=> BN = BM => BD là phân giác góc D
b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A
khi đó góc ADB = ﴾180 ‐110) :2= 35 độ
=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD
Và góc BCD = góc ADC = 70 độ
=> ABCD là hình thang cân
\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)\(A=\left(x-1\right)\left(x^2-5x+6+x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-4x+4\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x-2\right)^2-\left(x-1\right)\)
\(A=\left(x-1\right)\left[\left(x-2\right)^2-1\right]\)
\(A=\left(x-3\right)\left(x-1\right)^2\)
link tham khảo
https://olm.vn/hoi-dap/detail/9212510579.html
hok tót