Rút gọn biểu thức: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
\(a+b=15\)
\(\Rightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a^2+2ab+b^2=225\)
\(\Leftrightarrow a^2+4+b^2=225\)
\(\Leftrightarrow a^2+b^2=221\)
Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=221-4\)
\(217\)
Bài 2:
Vì \(x:7\)dư 6
\(\Rightarrow x\equiv-1\left(mod7\right)\)
\(\Rightarrow x^2\equiv1\left(mod7\right)\)
Vậy \(x^2:7\)dư 1

\(K=\left(x^2-2x\right)\left(x^2-2x+2\right)\)
\(\Rightarrow K=\frac{\left(x-1\right)^2}{x-2}=\frac{\left(x-2\right)^2+2\left(x-2\right)+1}{x-2}\)
\(\Rightarrow K=x-2+2+\frac{1}{x-2}\ge2+2\sqrt{\left(x-2\right).\frac{1}{x-2}=4}\)
Vậy GTTN là :x=3
\(K=\left(x^2-2x\right)\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+1-1\right)\left(x^2-2x+1+1\right)\)
\(=\left[\left(x+1\right)^2-1\right]\left[\left(x+1\right)^2+1\right]\)
\(=\left(x+1\right)^4-1\)
\(\ge-1\)
Dấu "=" xảy ra tại \(x=-1\)

a) \(27x^3-0,001\)
\(=\left(3x\right)^3-\left(\frac{1}{10}\right)^3\)
\(=\left(3x-\frac{1}{10}\right)\left(9x^2+\frac{3}{10}x+\frac{1}{100}\right)\)
b) \(a^4-2a^2+1\)
\(=\left(a^2\right)^2-2a^2+1\)
\(=\left(a^2-1\right)^2\)
c)\(\left(a^2+4\right)^2-16a^2\)
\(=\left(a^2+4\right)^2-\left(4a\right)^2\)
\(=\left(a^2+4-4a\right)\left(a^2+4+4a\right)\)
\(=\left(a-2\right)^2\left(a+2\right)^2\)

a
Xét \(\Delta AEB\) có:\(\widehat{ABE}=90^0;\widehat{BAE}=60^0\Rightarrow\widehat{AEB}=30^0\)
Ta có:\(\widehat{ABC}=\widehat{ABO}+\widehat{OBE}+\widehat{EBC}\Rightarrow\widehat{OBE}=180^0-90^0-60^0=30^0\)
Khi đó \(\widehat{AEB}=\widehat{OBE}=30^0\) suy ra \(\Delta EOB\) cân tại O
b
Ta có:\(\widehat{AOE}=\widehat{AOB}+\widehat{BOC}+\widehat{COE}\Rightarrow\widehat{BOC}=180^0-90^0-60^0=30^0\)
Khi đó:\(\widehat{BOI}=\widehat{IBO}=30^0\Rightarrow\Delta IOB\) cân tại I
\(\Rightarrow IO=IB\)
Xét \(\Delta OIE\) và \(\Delta BIC\) có:
\(OI=BI;\widehat{EOI}=\widehat{CBI}=90^0;\widehat{OIE}=\widehat{BIC}\left(đ.đ\right)\Rightarrow\Delta OIE=\Delta BIC\left(cgv.gn\right)\)
\(\Rightarrow OE=BC\Rightarrow OE+OA=BC+AB\Rightarrow AE=AC\)
\(\Rightarrow\Delta AEC\) cân tại A có \(\widehat{A}=60^0\) nên nó là tam giác đều.
c
Xét \(\Delta OCE\) và \(\Delta BEC\) có:\(OE=BC;\widehat{EBC}=\widehat{COE}=60^0;\widehat{EOC}=\widehat{EBC}=90^0\)
\(\Rightarrow\Delta OCE=\Delta BEC\left(cgv.gn\right)\Rightarrow OC=BE\) ( 1 )
Mặt khác:\(\widehat{ABO}=\widehat{BCE}=60^0\Rightarrow OB//CE\Rightarrow OBCE\) là hình thang.
Kết hợp với ( 1 ) ta có được tứ giác OBCE là hình thang cân.

(12x-5).(4x-1)-(3x-7).16x=81
48x²-12x-20x+5-(48x²-112x)=81
48x²-12x-20x+5-48x²+112x=81
(48x²-48x²)+(112x-12x-20x)+5=81
0+100x-20x+5=81
80x+5=81
80x=81-5
80x=76
x=76:80
x=19/20
Vậy x=19/20
Hok tốt


A B C M N D E
Xét \(\Delta DAM\) và \(\Delta CBM\) có:
\(BM=AM\left(gt\right);\widehat{DMA}=\widehat{CMB}\left(đ.đ\right);DM=MC\left(đ.đ\right)\Rightarrow\Delta DAM=\Delta CBM\left(c.g.c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{CBM}\) ( 1 )
Tương tự \(\Delta AEN=\Delta CBN\left(c.g.c\right)\Rightarrow\widehat{EAN}=\widehat{BCN}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra:\(\widehat{DAM}+\widehat{EAN}=\widehat{CBM}+\widehat{BCN}\)
\(\Rightarrow\widehat{DAM}+\widehat{EAN}+\widehat{BAC}=\widehat{CBM}+\widehat{BCN}+\widehat{BAC}\Rightarrow\widehat{DAE}=180^0\)
=> D,A,E thẳng hàng.
Mặt khác \(DA=BC;EA=BC\Rightarrow DA+EA=2BC\Rightarrow DE=2BC\Rightarrow DA=EA\Rightarrowđpcm\)
\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{\left(x^2+2xy+y^2\right)+xy+y^2}{\left(x^3+x^2y+xy^2+y^3\right)+x^2y-2xy^2-3y^3}\)
\(=\frac{\left(x+y\right)^2+y\left(x+y\right)}{\left(x+y\right)^3+y.\left(x^2-2xy-2y^2\right)}\)