viết công thức parabol biết (P) có đỉnh là I(1;-2) và chắn đường thẳng (d) y = x + 1 một dây cung có độ dài MN = căn34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung :\(x;y;z\inℤ\)
Chú ý là cách làm này của mk chả bt có đúng ko nữa vì nó hơi mang tính ép buộc ^^
Ta có hệ \(\hept{\begin{cases}x+y+z=5\left(1\right)\\xy+yz+zx=8\left(2\right)\end{cases}}\)
Bình phương 2 vế của (1) ta đc \(x^2+y^2+z^2+2xy+2yz+2zx=25\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=25\)
\(\Leftrightarrow x^2+y^2+z^2+2.8=25\)
\(\Leftrightarrow x^2+y^2+z^2=9=8+1\)
\(\Leftrightarrow x^2+y^2+z^2=xy+yz+zx+1\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz+2\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=2\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=2\)
Vì x;y;z là các số nguyên nên\(\left(x-y\right)^2;\left(y-z\right)^2;\left(x-z\right)^2\)là các số chính phương
Mà 2 là tổng của 3 số chính phương là 0 ; 1 và 1
Nên\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=1\\\left(x-z\right)^2=1\end{cases}}\)và các hoán vị của chúng
Xét 3 t/h . Mk sẽ làm hộ 1 t/h còn 2 t/h còn lại làm tương tự
*T/H 1:\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=1\\\left(x-z\right)^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y-z=\pm\\x-z=\pm1\end{cases}1\Leftrightarrow\hept{\begin{cases}x=y\\y-z=\pm1\end{cases}}}\)
-Nếu \(\hept{\begin{cases}x=y\\y-z=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\z=y-1\end{cases}}\)
Thay vào pt (1) ban đầu được y+y+y-1=5
<=> 3y = 6
<=> x=y=2
=> z = 1
- Nếu \(\hept{\begin{cases}x=y\\y-z=-1\end{cases}}\)tương tự t/h trên
Các t/h còn lại làm tương tự t/h 1 .Bài này dài phết :)
Chết viết thiếu cái dòng "và các hoán vị của chúng "
Dòng đấy viết thế này :'
Nên \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=1\\\left(x-z\right)^2=1\end{cases}}\)và các hoán vị của chúng
Nếu bn ko bt 2 T/H còn lại là gì thì đây : T/H2\(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(y-z\right)^2=0\\\left(x-z\right)^2=1\end{cases}}\)và T/H3 \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(y-z\right)^2=1\\\left(x-z\right)^2=0\end{cases}}\)
ĐKXĐ: x > y
Ta có hệ \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x-y}=4\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+2\sqrt{\left(x+y\right)\left(x-y\right)}+x-y=16\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x^2-y^2}=16-2x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2-y^2}=8-x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8-x\ge0\\x^2-y^2=\left(8-x\right)^2\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\x^2-y^2=64-16x+x^2\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\-y^2=64-16x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\y^2=16x-64\\x^2+y^2-y^2=18-16x+64\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\left(1\right)\\y^2=16x-64\left(2\right)\\x^2+16x-82=0\left(3\right)\end{cases}}\)
Giải (3) \(x^2+16x-82=0\)
\(\Leftrightarrow x^2+16x+64=146\)
\(\Leftrightarrow\left(x+8\right)^2=146\)
\(\Leftrightarrow x+8=\pm\sqrt{146}\)
\(\Leftrightarrow x=\pm\sqrt{146}-8\)(Thỏa mãn (1) )
Thay vào (2) tìm được y rồi so sánh ĐKXĐ => KL
@Fabulous Joker cảm ơn ông nhiều lắm
mai tôi phải nộp bài r
HĐT của vế phải và đặt từng nhân tử của vế phải là a, b
=> a^2-b^2=ab ....
Phương trình đề bài cho tương đương:
\(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Rightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Rightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
\(\Rightarrow x+y+2=0\) (thừa số thứ 2 luôn > 0)
\(\Rightarrow x+y=-2\)
Ta có: \(\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\left(-2\right)^2\ge4xy\Rightarrow xy\le1\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\le-\frac{2}{1}=-2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=-2\end{cases}\Rightarrow x=y=-1}\)
Bạn ơi tại sao: \(\left(x+y+z\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
giúp mk xử lí đoạn MN = căn 34 đi