K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

minh choi poke dai chien

con bai minh chui

nho tk minh nhe

tụi bạn ở sv mấy

1 + 1 = 2

hok tốt - kb nhé

7 tháng 11 2018

Đáp án 

1 + 1 

= 2

Học tốt

7 tháng 11 2018

bình phương 2 vế ta được a^2+b^2+2ab<(ab^2)+2ab+1

                                           (ab^2)+1-a^2-b^2>0

                                            (a^2-1)(b^2-1)>0

                            Mặt khác a^2<1 và b^2<1 (do trị tuyệt đối a và b nhỏ hơn 1)

                           suy ra đpcm  

                             k đúng cho mk nhé

8 tháng 11 2018

ta có : \(a^2+b^2+2ab< \left(ab^2\right)+2ab+1 \)\

\(ab^2+1-a^2-b^2>0 \)

\(\left(a^2-1\right)\left(b^2-1\right)>0\)

Mặt khác \(a^2< 1\)và \(b^2-1\) do \(\left|a\right|< 1,\left|b\right|< 1\)

Suy ra \(\left|a+b\right|< \left|1+ab\right|\)đpcm

7 tháng 11 2018

A B C D E F H

7 tháng 11 2018

a) Xét tứ giác BFEC  có \(\widehat{BFC}=\widehat{BEC}=90^o\)

=> Tứ giác BFEC nội tiếp

=> 4 điểm nằm trên một đường tròn

b) Xét 2 tam giác AHE và BHD  đồng dạng ( góc. góc)

=> Có tỉ lệ \(\frac{HA}{HB}=\frac{HE}{HD}\)=> HA.HD=HB.HE

c)Vì tứ giác AFDC nội tiếp, EFBC nội tiếp

SUY ra : \(\widehat{ADF}=\widehat{FCE}=\widehat{FBE}\Rightarrow sin\widehat{ADF}=\frac{AF}{AC}=\frac{AE}{AB}\)

Tương tự \(sin\widehat{BED}=\frac{BF}{BC}=\frac{BD}{AB};sin\widehat{CFE}=\frac{EC}{BC}=\frac{CD}{AC}\)

=> \(\left(sin\widehat{ADF}.sin\widehat{BED}.sin\widehat{CFE}\right)^2=\frac{AF}{AC}.\frac{AE}{AB}.\frac{BF}{BC}.\frac{BD}{AB}.\frac{EC}{BC}.\frac{CD}{AC}\)

=\(\frac{AF.AE.BF.BD.EC.CD}{AC^2.BC^2.AB^2}=\frac{AF.AE.BF.BD.EC.CD}{\left(AE+EC\right)^2.\left(BD+DC\right)^2.\left(AF+FB\right)^2}\le\frac{AF.AE.BF.BD.EC.CD}{4AE.EC.4.\text{BD.DC.4AF}.FB}=\frac{1}{64}\)

=> \(sin\widehat{ADF}.sin\widehat{BED}.sin\widehat{CFE}\le\frac{1}{8}\)

7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~