Chứng minh rằng nếu a > b và ab > 0 thì 1/a < 1/b
Có ai chơi poke đại chiến ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh choi poke dai chien
con bai minh chui
nho tk minh nhe
bình phương 2 vế ta được a^2+b^2+2ab<(ab^2)+2ab+1
(ab^2)+1-a^2-b^2>0
(a^2-1)(b^2-1)>0
Mặt khác a^2<1 và b^2<1 (do trị tuyệt đối a và b nhỏ hơn 1)
suy ra đpcm
k đúng cho mk nhé
a) Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^o\)
=> Tứ giác BFEC nội tiếp
=> 4 điểm nằm trên một đường tròn
b) Xét 2 tam giác AHE và BHD đồng dạng ( góc. góc)
=> Có tỉ lệ \(\frac{HA}{HB}=\frac{HE}{HD}\)=> HA.HD=HB.HE
c)Vì tứ giác AFDC nội tiếp, EFBC nội tiếp
SUY ra : \(\widehat{ADF}=\widehat{FCE}=\widehat{FBE}\Rightarrow sin\widehat{ADF}=\frac{AF}{AC}=\frac{AE}{AB}\)
Tương tự \(sin\widehat{BED}=\frac{BF}{BC}=\frac{BD}{AB};sin\widehat{CFE}=\frac{EC}{BC}=\frac{CD}{AC}\)
=> \(\left(sin\widehat{ADF}.sin\widehat{BED}.sin\widehat{CFE}\right)^2=\frac{AF}{AC}.\frac{AE}{AB}.\frac{BF}{BC}.\frac{BD}{AB}.\frac{EC}{BC}.\frac{CD}{AC}\)
=\(\frac{AF.AE.BF.BD.EC.CD}{AC^2.BC^2.AB^2}=\frac{AF.AE.BF.BD.EC.CD}{\left(AE+EC\right)^2.\left(BD+DC\right)^2.\left(AF+FB\right)^2}\le\frac{AF.AE.BF.BD.EC.CD}{4AE.EC.4.\text{BD.DC.4AF}.FB}=\frac{1}{64}\)
=> \(sin\widehat{ADF}.sin\widehat{BED}.sin\widehat{CFE}\le\frac{1}{8}\)
\(a)\)\(x+xy+y=-6\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)
Lập bảng xét TH ra là xong
\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Xin thêm 1 slot đi hok về làm cho -,-
\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel )
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :))
Chúc bạn học tốt ~