- so sánh C=\(\cfrac{2011}{√2012}+\frac{2012}{√2011}\)với D=√2011+√2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+x\right)\left(y+z\right)=xyz+2\)
\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)
\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)
\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)
\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)
Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)
Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) )
Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) )
Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) )
\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)
Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau
Giải r nhưng quên link, có j e ib gửi link khác cho :))
Chúc a học tốt ~
Ta sẽ chứng minh: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-3\left(a^2+b^2+c^2\right)\ge0\) (1)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2+b^2+c^2}{a+b+c}\) (2)
Mặt khác,ta cũng có: \(3\left(a^2+b^2+c^2\right)=\frac{3\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{a+b+c}\)
Ta cần chứng minh \(a^2+b^2+c^2-3\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge0\) (3)
Thay a + b + c = 0 vào (1),ta cần chứng minh: \(a^2+b^2+c^2\ge0\)(luôn đúng) (4)
Từ (4) suy ra (3) đúng suy ra (2) đúng suy ra đcpm
CHTT nhé