Hình chữ nhật có chiều rộng là x (cm), chiều dài hơn chiều rộng 3 (cm). Viết biểu thức đại số biểu thị chu vi và diện tích theo biến x?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Một mảnh đất hình chữ nhật có chiều dài 12 m, chiều dài hơn chiều rộng 3 m. Tính chu vi mảnh đất đó.

chiều rộng mảnh đất là:
12-3=9(m)
Chu vi mảnh đất là:
(12+9)x2=42(m)
Đáp số: 42m
Chiều rộng của mảnh đất là:
12-3=9 (m)
Chu vi mảnh đất là:
(12+9)x2 = 42 (m)

a: Xét ΔQEN và ΔQFP có
QE=QF
\(\widehat{EQN}\) chung
QN=QP
Do đó: ΔQEN=ΔQFP
=>EN=FP
b: Ta có: QF+FN=QN
QE+EP=QP
mà QF=QE và QN=QP
nên FN=EP
Xét ΔFNP và ΔEPN có
FN=EP
FP=EN
NP chung
Do đó: ΔFNP=ΔEPN
=>\(\widehat{FPN}=\widehat{ENP}\)
=>\(\widehat{HNP}=\widehat{HPN}\)
=>ΔHNP cân tại H
=>HN=HP
c: Xét ΔQNH và ΔQPH có
QN=QP
NH=PH
QH chung
Do đó: ΔQNH=ΔQPH
=>\(\widehat{QNH}=\widehat{QPH}\)
Ta có: QN=QP
=>Q nằm trên đường trung trực của NP(1)
Ta có: HN=HP
=>H nằm trên đường trung trực của NP(2)
Từ (1),(2) suy ra QH là đường trung trực của NP
=>QH\(\perp\)NP

\(0,6x+\dfrac{3}{2}=-0,3\)
`0,6x+1,5=-0,3`
`0,6x=-0,3-1,5`
`0,6x=-1,8`
`x=-1,8:0,6`
`x=-3`

*Trả lời:
\(\frac14+\frac{x}{12}=\frac{8}{12}\)
\(\frac{x}{12}=\frac{8}{12}-\frac14\)
\(\frac{x}{12}=\frac{8}{12}-\frac{3}{12}\)
\(\frac{x}{12}=\frac{5}{12}\)
=> \(x=5\)
+ Vậy giá trị x thỏa mãn \(\frac14+\frac{x}{12}=\frac{8}{12}\) là \(5\).

Ta có: \(-\dfrac{7}{8}\cdot\dfrac{3}{5}-\dfrac{2}{5}\cdot\dfrac{7}{8}+3\dfrac{7}{8}\)
\(=-\dfrac{7}{8}\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+3+\dfrac{7}{8}\)
\(=-\dfrac{7}{8}+3+\dfrac{7}{8}\)
=3

\(\left(x^2+1\%x\right)^4\)
\(=\left(x^2+\dfrac{1}{100}x\right)^4\)
\(=\left(x^2\right)^4+C^1_4\cdot\left(x^2\right)^3\cdot\left(\dfrac{1}{100}x\right)+C^2_4\cdot\left(x^2\right)^2\cdot\left(\dfrac{1}{100}x\right)^2+C^3_4\cdot\left(x^2\right)^1\cdot\left(\dfrac{1}{100}x\right)^3+C^4_4\cdot\left(\dfrac{1}{100}x\right)^4\)
\(=x^8+\dfrac{1}{25}x^6\cdot x+\dfrac{3}{5000}\cdot x^4\cdot x^2+\dfrac{1}{250000}\cdot x^2\cdot x^3+\dfrac{1}{10^4}\cdot x^4\)
\(=x^8+\dfrac{1}{25}x^7+\dfrac{3}{5000}x^6+\dfrac{1}{250000}x^5+\dfrac{1}{10000}x^4\)

\(B=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)
\(=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{2500}\)
\(=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...+1-\dfrac{1}{50^2}\)
\(=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{50^2}< \dfrac{1}{49\cdot50}=\dfrac{1}{49}-\dfrac{1}{50}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{50}< 1\)
=>\(0< \dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1\)
=>\(0>-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>-1\)
=>\(0+49>-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)+49>-1+49\)
=>49>B>48
=>B không là số tự nhiên


a: \(\dfrac{3}{4}=\dfrac{3\times2}{4\times2}=\dfrac{6}{8};\dfrac{1}{2}=\dfrac{1\times4}{2\times4}=\dfrac{4}{8};\dfrac{5}{8}=\dfrac{5\times1}{8\times1}=\dfrac{5}{8}\)
Vì \(\dfrac{4}{8}< \dfrac{5}{8}< \dfrac{6}{8}\)
nên ngày đầu tiên là ngày mà Long dành nhiều thời gian ở thư viện nhất
b: Vì \(\dfrac{4}{8}< \dfrac{5}{8}< \dfrac{6}{8}\)
nên ngày thứ hai là ngày mà Long dành ít thời gian ở thư viện nhất
c: Tổng thời gian Long dành ra để ở thư viện trong 3 ngày là:
\(\dfrac{4}{8}+\dfrac{5}{8}+\dfrac{6}{8}=\dfrac{15}{8}\left(giờ\right)\)
Chiều dài hình chữ nhật là x+3(cm)
Chu vi hình chữ nhật là: \(2\left(x+x+3\right)=2\left(2x+3\right)=4x+6\left(cm\right)\)
Diện tích hình chữ nhật là:
\(x\left(x+3\right)\left(cm^2\right)\)
chiều dài hơn rộng 3 cm=> cd: x+3
chu vi theo biến x: (x+ (x+3)).2
diện tích theo biến x: x.x+3= 2x+3