Tìm m,n để biểu thức \(P=\frac{20x^2+mx+n}{3x^2+2x+1}\) đạt giá trị lớn nhất bằng 7 và đạt giá trị nhỏ nhất bằng \(\frac{5}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-1\le x\le\frac{1}{2}\)
Ta có: \(A=\frac{x}{2}+\sqrt{\left(1+x\right)\left(1-2x\right)}\le\frac{x}{2}+\frac{1+x+1-2x}{2}=1\)
Dấu = xảy ra khi \(1+x=1-2x\Rightarrow x=0\)( Thỏa mãn ĐKXĐ )
DK: \(0< a,b\le1\)
\(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\)
<=> \(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)
<=> \(a^2+1-a^2+2a\sqrt{1-a^2}=b^2+1-b^2+2b\sqrt{1-b^2}\)
<=> \(a\sqrt{1-a^2}=b\sqrt{1-b^2}\)
<=> \(a^2\left(1-a^2\right)=b^2\left(1-b^2\right)\)
<=> \(a^2-a^4=b^2-b^4\)
<=> \(a^2-b^4-b^2+b^4=0\)
<=> \(\left(a^2-b^2\right)\left(1-a^2-b^2\right)=0\)
<=> \(1-a^2-b^2=0\) ( do a # b)
<=> \(a^2+b^2=1\)
=> dpcm
a, * Với m + 1 = 0 => m = -1
Phương trình trở thành: -2x - 4 = 0 <=> 2x = -4 <=> x = -2
m = -1 phương trình có nghiệm x = -2
* Với m + 1 \(\ne\)0 \(\Leftrightarrow\)m\(\ne\) -1
\(\Delta'\) =( m + 2 )-(m+1) (m-3) = m2 + 4m + 4 - m2 + 3m - m + 3
= 6m + 7
Phương trình có nghiệm : \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\) 6m + 7 \(\ge\) 0 \(\Leftrightarrow\)6m \(\ge\) -7 \(\Leftrightarrow\)m \(\ge-\frac{7}{6}\)
Phương trình có nghiệm \(\Leftrightarrow\) m \(\ne\) -1 ; m \(\ge\)\(-\frac{7}{6}\)
Kết luận : Phương trình có nghiệm \(\Leftrightarrow m\ge-\frac{7}{6}\)
b, Điều kiện : m \(\ge-\frac{7}{6};m\ne-1\)
Theo hệ thức Viet , ta có \(\hept{\begin{cases}S=x_1+x_2=\frac{2\left(m+2\right)}{m+1}\\P=x._1x_2=\frac{m-3}{m+1}\end{cases}}\)
Do đó \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
\(\Leftrightarrow16x_1x_2+4x_1+4x_2+1=18\)
\(\Leftrightarrow16x_1x_2+4\left(x_1+x_2\right)-17=0\)
\(\Leftrightarrow\frac{16\left(m-3\right)}{m+1}+\frac{8\left(m+2\right)}{m+1}-17=0\)
\(\Leftrightarrow16\left(m-3\right)+8\left(m+2\right)-17\left(m+1\right)=0\)
\(\Leftrightarrow16m-48+8m+16-17m-17=0\)
\(\Leftrightarrow7m-49=0\Leftrightarrow7m=49\Leftrightarrow m=7\)
m = 7 thỏa mãn điều kiện \(\hept{\begin{cases}m\ne-1\\m\ge-\frac{7}{6}\end{cases}}\)
Vậy \(m=7\) thì phương trình có 2 nghiệm \(x_1;x_2\)thỏa mãn:
\(4\left(x_1+1\right)\left(4x_2+1\right)=18\)