Trong 1 căn nhà có 2 chiếc ghế, có 4 người đến chơi. Hỏi có đủ chỗ cho mọi người ngồi ko??? (gợi ý: YES) :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ đây :
YAX34P43.jpg (578×558)
Bài làm để Cô Quản Lý giúp đỡ nhá bn :)
Hc tốt
A B C D E F H G I
a) Gọi I là trung điểm AF
=> AI = IF = FD = 1/3 AD = 1/3 BC = BE
Mà AI//BE ( vì AD //BC)
=> ABEI là hình bình hành.
=> EI //AB (1)
Xét tam giác AFH có: IE//AG ( theo (1) ) và I là trung điểm AF
=> E là trung điểm FG => EG = EF
Dễ dàng chứng minh được \(\Delta FHD=\Delta EGB\)=> HF = GE
=> GE = HF = EF
b ) DF = 1/3 DA => AF= 2/3 DA
BE = 1/3 BC => EC = 2/3 BC
Vì ABCD là hình bình hành => DA = BC => AF = EC
Mà AF// EC ( vì AD //BC )
=> AF//=EC
=> AECF là hình bình hành.
TL :
- Mình thề làm bạn này viết thiếu đầu bài
- Bài thế này không bao giờ là bài lớp 8
- Bạn xem có viết sai sót gì không
HK tốt
Hai số cần tìm là nghiệm của pt \(:x^2-25x+136=0\)
Ta có: \(\Delta=\left(-25\right)^2-4.130=105,\sqrt{\Delta}=\sqrt{105}\)
\(x_1=\frac{25+\sqrt{105}}{2}\);\(x_2=\frac{25-\sqrt{105}}{2}\)
Vậy hai số cần tìm là \(\frac{25+\sqrt{105}}{2}\)và \(\frac{25-\sqrt{105}}{2}\)
+) Xét trường hợp x≤−1x≤−1:
Khi đó:
M =−x−1+10−2x+7−2x+112−12x=432−112x≥432−112(−1)=27−x−1+10−2x+7−2x+112−12x=432−112x≥432−112(−1)=27
+) Xét trường hợp −1<x≤72−1<x≤72:
Khi đó:
M = x+1+10−2x+7−2x+112−12x=472−72x≥472−72.72=874x+1+10−2x+7−2x+112−12x=472−72x≥472−72.72=874
+) Xét trường hợp 72<x<572<x<5:
Khi đó
M = x+1+10−2x+2x−7+112−x2=192+12x+1+10−2x+2x−7+112−x2=192+12
Không có giá trị nhỏ nhất
+) Xét trường hợp 5≤x<1125≤x<112:
Khi đó
M = x+1+2x−10+2x−7+112−x2=92x−212≥92.5−212=12x+1+2x−10+2x−7+112−x2=92x−212≥92.5−212=12
+) Xét trường hợp x≥11x≥11:
Khi đó
M = x+1+2x−10+2x−7+x2−112=112x−432≥112.11−432=39x+1+2x−10+2x−7+x2−112=112x−432≥112.11−432=39
Vậy giá trị nhỏ nhất của M bằng 12
Dấu bằng xảy ra khi x = 5.
Dạ ! Thầy giáo mới chữa bài này xong , tiện thể giải luôn ạ :33
Có : Đa thức h(x) có bậc là 4, hệ số của bậc cao nhất là 1
=> h(x) = x4 + bx3 + cx2 + dx + c
Đặt g(x) = x2 + 1 có :
g(1) = 2 ; g(2) = 5; g(4) = 17 ; g(-3) = 10
Đặt : f(x) = h(x) - g(x)
=> f(1) = h(1) - g(1) = 2 - 2 = 0
f(2) = h(2) - g(2) = 5 - 5 = 0
f(4) = h(4) - g(4) = 17 - 17 = 0
f(-3) = h(-3) -g(-3) = 10 - 10 = 0
=> h(x) = ( x - 1)( x - 2)( x +3)( x- 4)
=> h(x) = ( x2 - 5x + 4 )( x2 + x - 6 )
=> h(x) = x4 - 4x3 - 6x2 - 28x - 23
Thầy mới chữa ạ :33
x2 + 8y2 + 4xy - 2x - 4y = 4
x2 + 4y2 + 1 + 4xy - 2x - 4y = 5 - 4y2
( x + 2y - 1 )2 + 4y2 = 5
Vì \(4y^2\ge0\) \(4y^2\in Z\)
\(4y^2⋮4\)
TH1 : 4y2 = 0
=> y = 0
=> ( x + 2y - 1)2 = 5
Mà x là số nguyên
5 không phải là số chính phương
=> Loại
TH2 : 4y2 > 0
Mà y thuộc Z
=> 4y2 = 4
=> y thuộc { -1;1 }
Với y = 1 => ( x + 1 )2 = 1 => x thuộc { 0;-2 }
Với y = -1 => ( x - 2)2 = 1 => x thuộc { 2;4 }
Vậy \(\left(x;y\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(2;-1\right);\left(4;-1\right)\right\}\)
\(\Leftrightarrow2\left(x^2+2xy+y^2\right)-\left(x^2+2x+1\right)+6\left(y^2-\frac{2}{3}y+\frac{1}{9}\right)-\frac{11}{3}=0\)
đến đây ,Áp dụng HĐT vào 2 cái đầu rồi giải nốt nha!^_^
Xét tam giác ABD có MN là đường trung bình => MN//=AD/2
Xét tam giác ACD có PQ là đường trung bình => PQ//=AD/2
=> MN//=PQ => Tứ giác MNPQ Là hình bình hành (1)
Tương tự ta cũng chứng minh được NP//=MQ//=BC/2
Ta có ^DAB+^AMN=180 (Hai góc trong cùng phía)
Ta có ^CBA+^BMQ=180 (lý do như trên)
=> (^DAB+^CBA)+(^AMN+^BMQ)=360 => ^AMN+^BMQ=360-^DAB+^CBA=360-270=90
Ta có ^AMB=^AMN+^BMQ+^NMQ=180=> ^NMQ=180-^AMN+^BMQ=180-90=90 (2)
Từ (1) và (2) => MNPQ là hình chữ nhật
\(2x^2+2y^2+z^2+2xy+2yz+2zx+2x+4y+5\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)\)
\(=\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2=0\)
Mà: \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x=-1\\y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}\)
a) \(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\y=1\end{cases}\Rightarrow}x=-1}\)
Vậy x=-1 ; y=1
a) Áp dụng BĐT Cauchy cho 2 số dương:
\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)
\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)
\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)
Cộng từ vế của các BĐT trên:
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))
b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)
\(+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra
\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)
Quên mất, ghế này chỉ đủ cho 1 người ngồi thôi nha! 2 ng còn lại ko ai ngồi lên đùi 2 ng đang ngồi ghế đâu! 😁😁😁
TL :
Có đủ !!!
Vì đó là cái ghế dài , kiểu ghế sofa
Dễ lắm luôn ý !
HK tốt