K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Để H lớn nhất thì \(\frac{1}{H}=\frac{\left(x+2018\right)^2}{x}\) nhỏ nhất.

Ta có: \(\frac{1}{H}=\frac{x^2+2.x.2018+2018^2}{x}=x+4036+\frac{2018^2}{x}\)

\(\frac{x+\frac{2018^2}{x}}{2}\ge\sqrt{x.\frac{2018^2}{x}}=2018\) (áp dụng bất đẳng thức cosi) \(\Rightarrow x+\frac{2018^2}{x}\ge4036\)

\(\frac{1}{A}\ge4036+4036=8072\Rightarrow A\le\frac{1}{8072}\)

Dấu "=" xảy ra khi: \(x=\frac{2018^2}{x}\Rightarrow x^2=2018^2\Rightarrow x=2018\left(x>0\right)\)

Vậy GTLN của H là \(\frac{1}{8072}\Leftrightarrow x=2018\)

28 tháng 11 2018

chỗ 1/A bạn thay bằng 1/H nhé.

28 tháng 11 2018

a, Vì \(-6< 0\)nên hàm số (1) là hàm nghịch biến

Vì \(A\left(-1;6\right)\in\left(1\right)\)

\(\Rightarrow6=\left(-6\right).\left(-1\right)+m-1\)

\(\Leftrightarrow6=6+m-1\)

\(\Leftrightarrow m=1\)

b, Đths (1) cắt đths 2 tại 1 điểm trên trục tung nên 

\(\hept{\begin{cases}m-1\ne3m-11\\x=0\\-6x+m-1=\left(m-1\right)x+3m-11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m-1\ne3m-11\\m-1=3m-11\end{cases}}\)ko tìm đc m

27 tháng 11 2018

Cho hình bình hành ABCD có góc A nhọn (AB<AD) Tia phân giác BAD cắt BC tại M và cắt DC tại N Gọi K là tâm đường tròn ngoại tiếp tam giác MCN 
a) C/m: DN=BC và CK vuông góc MN 

Do ∡A nhọn và AB < AD nên tia phân giác ∡A cắt 
BC tại M∊đoạn BC và N ngoài đoạn DC ( C nằm giữa D,N) 
∡BAM = ∡MAD (AM là pg) và ∡BAN = ∡DNA (sl trong) 
→∡DAN = ∡DNA → ∆ADN cân đỉnh D → DN = AD = BC 
Xét ∆MCN có ∡DAN = ∡DNA ( cm trên) , 
∡DAN = ∡CMN ( đồng vị) →∡CNM = ∡CMN 
→ ∆MCN cân đỉnh C → K thuộc trung trực MN 
→ CK vuông góc MN 

b) C/m BKCD nội tiếp 
Gọi E là trung điểm MC, F là trung điểm CN ta có : 
KE vuông góc MC, KF vuông góc CN , BE = DF 
xét ∆KEC và ∆KFC là 2 ∆ vuông có CK chung, 
∡ECK = ∡FCK ( ∆MCN tại C và CK là trung trực, pg...) 
→ ∆KEC = ∆KFC → EK = FK 
xét hai tam giác vuông ∆KEB và ∆KFD có BE = DF (cm trên) 
KE = KF (cm trên) → ∆KEB = ∆KFD →∡KBE = ∡KDF 
hay ∡KBC = ∡KDC . B và D cùng phía so với đường thẳng 
CK mà ∡KBC = ∡KDC → B, C, D, K thuộc đường tròn 
( quỹ tích cung chứa góc ) → BKCD nội tiếp

27 tháng 11 2018

bức tranh được UNESCO công nhận là bức tranh đẹp nhất thế giới. Có 1 0 2

28 tháng 11 2018

\(\frac{2}{\sqrt{3}+1}-\frac{1}{\sqrt{3}-2}+\frac{12}{\sqrt{3}+3}\)

\(=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{12\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\frac{2\left(\sqrt{3}-1\right)}{3-1}-\frac{\sqrt{3}+2}{3-4}+\frac{12\left(3-\sqrt{3}\right)}{9-3}\)

\(=\sqrt{3}-1+\sqrt{3}+2+6-2\sqrt{3}\)

\(=7\)

                                                     

                                                       

27 tháng 11 2018
√3-2+√(3+1)^2 √3-2+3+1 √3-6
27 tháng 11 2018

\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{4-2\sqrt{3}}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=2-\sqrt{3}+\left|\sqrt{3}-1\right|\)

\(=2-\sqrt{3}+\sqrt{3}-1=1\)

27 tháng 11 2018
(2.10√3+3.4√3-4.5√3):√3 20√3+12√3-20√3):√3 12√3:√3 12
28 tháng 11 2018

\(\left(2\sqrt{300}+3\sqrt{48}-4\sqrt{75}\right):\sqrt{3}\)

\(=\left(20\sqrt{3}+12\sqrt{3}-20\sqrt{3}\right):\sqrt{3}\)

\(=12\sqrt{3}:\sqrt{3}\)

\(=12\)