K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

VC
23 tháng 6 2020

a) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(x^4-5x+2x^2+1\right)+\left(5x+3x^2+5+\frac{1}{2}x^2+x\right)\)

\(M\left(x\right)=x^4-5x+2x^2+1+5x+3x^2+5+\frac{1}{2}x^2+x\)

\(M\left(x\right)=x^4+\left(2x^2+3x^2+\frac{1}{2}x^2\right)+\left(5x-5x\right)+\left(1+5\right)\)\(=x^4+5\frac{1}{2}x^2+6\)

b) Đặt  \(M\left(x\right)=x^4+5\frac{1}{2}x^2+6=0\Leftrightarrow x^4+5\frac{1}{2}x^2=0-6=-6\)

Mà \(x^4\ge0;5\frac{1}{2}x^2\ge0\forall x\Rightarrow x^4+5\frac{1}{2}x^2\ne-6\Rightarrow M\left(x\right)\) vô nghiệm

8 tháng 6 2020

\(a,M-\left(3xy-4y^2\right)=x^2-7xy+8y^2\)

\(\Leftrightarrow M=x^2-7xy+8y^2+\left(3xy-4y^2\right)\)

\(\Leftrightarrow x^2-7xy+8y^2+3xy-4y^2\)

\(\Leftrightarrow x^2+\left(-7xy+3xy\right)+\left(8y^2-4y^2\right)\)

\(\Leftrightarrow x^2+\left(-4xy\right)+4y^2\)

\(\Rightarrow M=x^2+\left(-4xy\right)+4y^2\)

8 tháng 6 2020

Ta có f(1999) = 19992015 - 2000.19992004 + 2000.19992013 - 2000.19992012 + .... + 2000.1999 - 1

                      = 19992015 - 2000(19992014 - 19992013 + 19992012 - .... - 2000.1999) - 1

         Đặt C = 19992014 - 19992013 + 19992012 - .... - 2000.1999

  Khi đó : f(1999) = 19992015 - 2000C - 1

Ta có : C = 19992014 - 19992013 + 19992012 - .... - 2000.1999

=> 1999C = 19992015 - 19992014 + 19992013 - .... - 2000.19992

Lấy 1999C cộng C theo vế ta có : 

1999C + C = (19992015 - 19992014 + 19992013 - .... - 2000.19992) + (19992014 - 19992013 + 19992012 - .... - 2000.1999)

      2000C = 19992015 - 2000.1999

=> f(1999) = 19992015 - 19992015 +  2000.1999 - 1 = 2000.1999 + 1

    

8 tháng 6 2020

GIÚP MÌNH VỚI 

8 tháng 6 2020

x = -2 

<=> \(2\cdot\left(-2\right)^2-6\cdot\left(-2\right)+1\)

\(2\cdot4+12+1\)

= 21

x = 1/4

<=> \(2\cdot\left(\frac{1}{4}\right)^2-6\cdot\frac{1}{4}+1\) 

\(2\cdot\frac{1}{16}-\frac{3}{2}+1\)

\(-\frac{3}{8}\)

8 tháng 6 2020

Bài làm:

Ta có: 

\(R\left(x\right)=2\left(x^2-6\right)-4\left(-3+x\right)=0\)

\(\Leftrightarrow2x^2-12+12-4x=0\)

\(\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy nghiệm của đa thức R(x) là 0 và 2

Học tốt!!!!



 

8 tháng 6 2020

a) \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy x=1;x=2

b) \(x^2+6x+5=0\)

\(\Leftrightarrow x^2+x+5x+5=0\)

\(\Leftrightarrow x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-1\end{cases}}}\)

Vậy x=-5;x=-1

8 tháng 6 2020

\(a,x^2-3x+2=0\)

\(x^2-x-2x+2=0\)

\(\left(x-1\right)\left(x-2\right)=0\)

\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

\(b,x^2+6x+5=0\)

\(x^2+x+5x+5=0\)

\(\left(x+1\right)\left(x+5\right)=0\)

\(\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)

8 tháng 6 2020

A C B E K I T

a) Xét \(\Delta\)ACE và \(\Delta\)KCE có: CE chung; ^ACE = ^KCE ( CE là phân giác ^ACB); ^EAC = ^EKC = 90o 

=> \(\Delta\)ACE = \(\Delta\)KCE ( cạnh huyền - góc nhọn ) (1)

=> CA = CK 

b) (a) => C thuộc đường trung trực của AK 

(1) => EA = EK => E thuộc đường trung trực của AK 

=> CE là đường trung trực của AK 

c) Xét \(\Delta\)ACB có ^A = 90o ; ^C=60o => ^B = 30o 

=> ^EBK = 60o

Mặt khác: ^KCE = ^ACE = ^ACB : 2 = 30o 

=> ^EBC = ^ECB 

=> \(\Delta\)BEC cân tại E 

d) Gọi T là giao điểm của CA và BI 

Xét \(\Delta\)TCB có BA vuông CT; CI vuông TB 

mà CI cắt BA tại E 

=> E là trực tâm của \(\Delta\)TCB 

=> TE vuông BC mà EK vuông BC 

=> T; E; K thẳng hàng 

=> CA; KE; BI đồng quy tại T 

Hình ko biết vẽ 

a/ Xét hai tam giác vuông ABI và EBI có:

góc ABI = góc EBI (BI là pg góc ABC)

BI: cạnh chung

=> tam giác ABI = tam giác EBI

=> BA = BE

Mà góc ABC = 600

=> tam giác BAE đều.

b/ Ta có: tam giác ABC vuông tại A

=> góc B + góc C = 900

hay 600 + góc C = 900

=> góc C = 300

Ta lại có: BI là pg góc ABC

=> góc ABI = góc IBC = 600 / 2 = 300

=> góc IBC = góc ICB = 300

=> tam giác IBC cân tại I

Mà IE là đường cao của tam giác IBC

=> IE cũng là trung tuyến của tam giác IBC

=> EB = EC (đpcm)

c/ Trong tam giác ABI vuông tại A

=> góc A > góc I

=> IB > AB

Trong tam giác ICE vuông tại E :

=> góc E > góc I

=> IC > EC

Ta có: IB > AB; IC > EC

=> IB + IC > AB + EC (đpcm).

d/ Ta có: BM là đường cao của tam giác BKC

Ta có: CA là đường cao của tam giác BKC

Mà BM cắt CA tại I

=> I là trực tâm của tam giác BKC

KE là đường cao còn lại của tam giác BKC (KE vuông góc BC)

=> I thuộc KE

=> K; I; E thẳng hàng.