Cho x > 0; y > 0 và x + y = 1.
Tìm GTNN của \(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P xác định khi \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)\)
\(=\frac{x-1}{\sqrt{x}}\)
P xác định khi \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)\)
\(=\frac{x-1}{\sqrt{x}}\)
ĐKXĐ: \(a,b\ge0;a\ge b\)
\(\sqrt{a-b}=\sqrt{a}-\sqrt{b}\)
\(\Rightarrow\left(\sqrt{a-b}\right)^2=\left(\sqrt{a}-\sqrt{b}\right)^2\)
\(\Leftrightarrow a-b=a-2.\sqrt{ab}+b\)
\(\Leftrightarrow2b=2\sqrt{ab}\)
\(\Leftrightarrow b=\sqrt{ab}\)
\(\Leftrightarrow b^2=\left(\sqrt{ab}\right)^2\)
\(\Leftrightarrow b^2=ab\)
\(\Leftrightarrow b^2-ab=0\)
\(\Leftrightarrow b\left(b-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=0\\b-a=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=0\\a=b\end{cases}}\)
b tự kết luận nhé~