K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

A B C H E F I 1

Vì  BE , BH là các tiếp tuyến của (O)

=>  AB là phân giác ^EAH

=> \(\widehat{BAH}=\frac{\widehat{EAH}}{2}\)

Tương tự \(\widehat{CAH}=\frac{\widehat{HÀF}}{2}\)

\(\Rightarrow\widehat{BAH}+\widehat{CAH}=\frac{\widehat{EAH}+\widehat{HAF}}{2}\)

\(\Rightarrow\frac{\widehat{EAH}+\widehat{HÀF}}{2}=90^o\)

\(\Rightarrow\widehat{EAH}+\widehat{HAF}=180^o\)

=> E , A , F thẳng hàng

=> EF là đường kính (A)

=> A là trung điểm EF

VÌ BE , CF là 2 tiếp tuyến của (A)

=> \(BE\perp EF\)và \(CF\perp EF\)

\(\Rightarrow BE\)// \(CF\)

=> BEFC là hình thang đáy BE , CF

Xét hình thang BEFC có A là trung điểm EF     

                                       I là trung điểm BC

=> AI là đường trung bình hình thang BEFC

=> AI // EF
Mà \(EF\perp FC\)(tiếp tuyến) 

=> \(AI\perp AF\)

=> \(\Delta AIF\)vuông tại A

=> \(sinF_1=\frac{AI}{IF}\)

Giờ cần tính AI và IF nữa là xong !

Áp dụng định lí Py-ta-go vào \(\Delta\)ABC vuông tại A

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow3^2+6^2=BC^2\)

\(\Leftrightarrow BC^2=45\)

\(\Leftrightarrow BC=3\sqrt{5}\)(Do BC > 0)

Vì \(\Delta\)ABC vuông tại A có AI là đường trung tuyến

=> \(AI=\frac{BC}{2}=\frac{3\sqrt{5}}{2}\)

Áp dụng hệ thức lượng vào \(\Delta\)ABC vuông tại A đường cao AH

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

           \(=\frac{1}{3^2}+\frac{1}{6^2}\)

           \(=\frac{5}{36}\)

\(\Rightarrow AH^2=\frac{36}{5}\)

\(\Rightarrow AF^2=\frac{36}{5}\)(Do AH = À vì cùng là bán kính (A) )

Áp dụng định lí Py-ta-go vào tam giác  AIF vuông tại A

\(AI^2+AF^2=IF^2\)

\(\Rightarrow\left(\frac{3\sqrt{5}}{2}\right)^2+\frac{36}{5}=IF^2\)

\(\Rightarrow IF^2=\frac{369}{20}\)

\(\Rightarrow IF=\sqrt{\frac{369}{20}}=\frac{3\sqrt{205}}{10}\)

Khi đó \(sinF_1=\frac{AI}{IF}=\frac{3\sqrt{5}}{2}:\frac{3\sqrt{205}}{10}=\frac{5}{\sqrt{41}}\)

Vậy \(sinF_1=\frac{5}{\sqrt{41}}\)

23 tháng 12 2018

A N M D E F G L P Q T H K I I J J 1 2 1 2

a) Xét đường tròn (J1) có: ^HJ1D = 2.^HMD (^HMD=1/2.Sđ(HD ). Tương tự: ^KJ2D = 2.^KND

Dễ thấy tứ giác MEFN nội tiếp (Do ^MEN = ^MFN) => ^DMH = ^DNK (2 góc nội tiếp cùng chắn cung EF)

Do đó: ^HJ1D = ^KJ2D. Mà các tam giác HJ1D và KJ2D cân tại J1 và J2 => ^J2DK + 1/2.^HJ1D = 900

Hay ^J2DK + ^HMD = 900 => J2D vuông góc EM. Có J1H vuông góc EM => J2D // J1H

=> ^J1DJ2 = ^HJ1D (So le trong) => ^HDK = ^J1DJ2 + ^J1DH + ^J2DK = ^HJ1D + ^J1DH + ^J1HD = 1800

=> 3 điểm K,H,D thẳng hàng. Lại có: ^AHD = 1/2.Sđ(HD;  ^AKD = 1/2.Sđ(KD => ^AHD = ^AKD

Từ đó: ^AHK = ^AKH => \(\Delta\)HAK cân tại A => AH=AK

Gọi giao điểm của tia AD với (I1) và (J1) lần lượt là P' và Q'. Ta sẽ chứng minh P' trùng P; Q' trùng Q.

Theo hệ thức lượng trong đường tròn: AH2 = AD.AQ' => AK2 = AD.AQ' => \(\Delta\)ADK ~ \(\Delta\)AKQ' (c.g.c)

=> ^AKD = ^AQ'K = 1/2.Sđ(DK => Điểm Q' nằm trên (J2) => Q' trùng Q (1)

Tương tự: AE.AM = AD.AP'; AE.AM = AF.AN => AF.AN = AD.AP' => \(\Delta\)ADF ~ \(\Delta\)ANP' (c.g.c)

=> ^ADF = ^ANP' => Tứ giác DFNP' nột tiếp => Điểm P' thuộc (DFN) hay P' thuộc (I2) => P' trùng P (2)

Từ (1) và (2) => Tia AD đi qua 2 điểm P và Q hay 3 điểm D,P,Q thẳng hàng (đpcm).

b) Định trên đoạn thẳng EF một điểm T thỏa mãn \(\frac{ET}{FT}=\frac{HD}{KD}\)

Ta thấy ^GEA = ^GFA => ^GEH = ^GFK. Kết hợp với ^GHE = ^GKF => \(\Delta\)GEH ~ \(\Delta\)GFK (g.g)

=> \(\frac{GE}{GH}=\frac{GF}{GK}\). Lại có: ^EGF = ^EAF = ^HGK (Các góc nội tiếp) => \(\Delta\)GEF ~ \(\Delta\)GHK (c.g.c)

Do T và D định trên các cạnh EF, HK các tỉ số tương ứng bằng nhau nên \(\Delta\)GTF ~ \(\Delta\)GDK (c.g.c)

=> \(\frac{GT}{GD}=\frac{GF}{GK}\). Nhưng ^TGD = ^FGK (=^TGF - ^TGK) nên \(\Delta\)GTD ~ \(\Delta\)GFK (c.g.c) 

=> ^GDT = ^GKF. Mà ^GKF = ^GQD => ^GDT = ^GQD = 1/2.Sđ(GD => DT là tia tiếp tuyến của đường tròn (DGQ) (3)

Mặt khác:^GLE = ^GFE = ^GKH = ^GQH. Dễ thấy: \(\Delta\)LEF ~ \(\Delta\)QHK. Từ \(\frac{ET}{FT}=\frac{HD}{KD}\)=> \(\Delta\)ELT ~ \(\Delta\)HQD

=> ^ELT = ^HQD => ^ELT - ^GLE = ^HQD - ^GQH => ^GLT = ^GQD. Mà ^GQD = ^GDT (cmt) nên ^GLT = ^GDT 

Từ đó có: Tứ giác GDLT nội tiếp hay điểm T nằm trên đường tròn (DLG)   (4)

Qua (3) và (4) suy ra: Tiếp tuyến tại D của đường tròn (DGQ) cắt EF tại điểm T nằm trên đường tròn (DLG) (đpcm).

22 tháng 12 2018

Dễ chứng minh m,n đều là số lẻ (sử dụng phản chứng vs n,m đều chẵn, 1 trong 2 số chẵn). Vậy ta có hđt mở rộng:

\(3^m+5^m+3^n+5^n=\left(3+5\right)\left(3^{m-1}-3^{m-2}.5+...\right)+\left(3+5\right)\left(3^{n-1}-3^{n-2}.5+...\right)\)

\(=8A+8B\)

=> \(3^n+5^m=8A+8B-3^m-5^n\)

=> \(3^n+5^m\)chia hết cho 8. d0pcm

22 tháng 12 2018

ờm

kb đê

cho ong nick rồi đó