rút gọn 8xy^3(x+y)/12x(x+y)^2
x^2-xy/3x^2-3y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 tam giác Vuông BIM và CKM
BM=CM
\(\widehat{BMI}=\widehat{CMK}\)(đối đỉnh)
\(\Rightarrow\) Tam giác BIM= Tam giác CKM(CH-GN)
\(\Rightarrow\)BI=CK( 2 cạnh tương ứng)
#Shinobu Cừu
Xét tam giác BIM và tam giác CKM lần lượt vuông tại T,K có:
\(\hept{\begin{cases}BM=CM\\\widehat{BMI}=\widehat{CMK}\end{cases}}\)
\(\Rightarrow\Delta BIM=\Delta CKM\)(cạnh huyền-góc nhọn)
Suy ra BI=CK(đpcm)
Bài làm:
Ta có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1.2.3.....30.31}{2.2.2.3.2.4.....2.31.2.32}=2^x\)
\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)
\(\Rightarrow x=-36\)
A B C M N F
Kẻ đường thẳng MF sao cho N là trung điểm của MF
+) Xét \(\Delta AMN\)và \(\Delta CFN\) có :
\(\hept{\begin{cases}AM=MB\\\widehat{ANM}=\widehat{CNF}\\AN=NC\end{cases}\Rightarrow\Delta AMN=\Delta CFN\left(c.g.c\right)}\)
\(\Rightarrow\widehat{MAN}=\widehat{FCN}\)( 2 góc tương ứng )
FC = AM ( 2 cạnh tương ứng ) ( 1 )
Mà \(\widehat{MAN}\widehat{\text{và}FCN}\) ở vị trí sole trong
=> AM // FC ( dấu hiệu ) (2 )
Mà AM = MB (3)
Từ (1) (2) (3)
=> FC // MB và FC = MB
+) Xét tứ giác MFCB có : FC // MB và FC = MB
=> MFCB là hình bình hành ( dấu hiệu nhận biết )
=> MF // BC ( tính chất)
=> MN // BC .
+) Vì MFCB là hình bình hành
=> MF = BC (4)
Ta có : MN + NF = MF
Mà MN = NF
=> \(MF=\frac{1}{2}MN\left(5\right)\)
Từ ( 4) và(5)
\(\Rightarrow MN=\frac{1}{2}BC\)
\(\frac{4m-2n}{4m+5n}\) với \(\frac{m}{n}=\frac{1}{5}\)
Ta có : \(\frac{m}{n}=\frac{1}{5}\)hay \(\frac{m}{1}=\frac{n}{5}\)
Đặt \(\frac{m}{1}=\frac{n}{5}=k\Rightarrow\hept{\begin{cases}m=k\\n=5k\end{cases}}\)
Do đó \(\frac{4m-2n}{4m+5n}=\frac{4k-2\cdot5k}{4k+5\cdot5k}=\frac{4k-10k}{4k+25k}=\frac{-6k}{29k}=-\frac{6}{29}\)
b. \(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}\)
Ta có : x - y = 7 => x = 7 + y
Do đó \(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}=\frac{2\left(7+y\right)+7}{3\left(7+y\right)-y}+\frac{2y-7}{3y-\left(7+y\right)}\)
\(=\frac{14+2y+7}{21+3y-y}+\frac{2y-7}{3y-7-y}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{2y-7}=1+1=2\)
a) \(\frac{m}{n}=\frac{1}{5}\Rightarrow\frac{m}{1}=\frac{n}{5}\)
Đặt \(\frac{m}{1}=\frac{n}{5}=k\Rightarrow\hept{\begin{cases}m=k\\n=5k\end{cases}}\)
Thế vào ta được :
\(\frac{4m-2n}{4m+5n}=\frac{4k-2.5k}{4k+5.5k}=\frac{4k-10k}{4k+25k}=\frac{-6k}{29k}=-\frac{6}{29}\)
b) x - y = 7 => x = 7 + y
Thế vào ta được :
\(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}=\frac{2\left(7+y\right)+7}{3\left(7+y\right)-y}+\frac{2y-7}{3y-\left(7+y\right)}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{3y-7-y}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{2y-7}=1+1=2\)
a) a = 2
+ y = f(1) = 2.1 = 2
+ y = f(-2) = 2.(-2) = -4
+ y = f(-4) = 2.(-4) = -8
b) f(2) = 4
=> 4 = a.2
=> a = 2
( Vẽ đồ thị hàm số thì bạn tự vẽ được mà :)) Ở đây vẽ hơi khó )
c) Khi a = 2
=> Ta có đồ thị hàm số y = 2x
+ A(1;4)
=> xA = 1 ; yA = 4
Thế vào đồ thị hàm số y = 2x ta có :
4 = 2.1 ( vô lí )
=> A không thuộc đồ thị hàm số y = 2x
+ B = ( -1; -2 )
=> xB = -1 ; yB = -2
Thế vào đồ thị hàm số y = 2x ta có :
-2 = 2(-1) ( đúng )
=> B thuộc đồ thị hàm số y = 2x
+ C(-2; 4)
=> xC = -2 ; yC = 4
Thế vào đồ thị hàm số y = 2x ta có :
4 = 2(-2) ( vô lí )
=> C không thuộc đồ thị hàm số y = 2x
+ D(-2 ; -4 )
=> xD = -2 ; yD = -4
Thế vào đồ thị hàm số y = 2x ta có :
-4 = 2(-2) ( đúng )
=> D thuộc đồ thị hàm số y = 2x
Ta có :\(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right).\left(2x-2\right)=\left(-\frac{3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)
=> \(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right).\left(2x-2\right)=-\frac{1}{2}\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\)
=> \(2x-2=-\frac{1}{2}\)
=> \(2x=\frac{3}{2}\)
=> \(x=\frac{3}{4}\)
\(\frac{1}{x-1}-\frac{2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2}-2x\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2}-2x\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{11}{5}=-2x\Leftrightarrow\frac{5}{5x-5}-\frac{x+11}{5x-5}=\frac{-2x\left(5x-5\right)}{5x-5}\)
\(\Leftrightarrow5-x-11=-10x^2+10x\)
Làm nốt nhé !
Bài làm:
\(\frac{8xy^3\left(x+y\right)}{12x\left(x+y\right)^2}=\frac{2y^3}{3\left(x+y\right)}\)
\(\frac{x^2-xy}{3x^2-3y^2}=\frac{x\left(x-y\right)}{3\left(x-y\right)\left(x+y\right)}=\frac{x}{3\left(x+y\right)}\)