Tìm x, biết:
a) \(|\sqrt{2}-x|=\sqrt{2}\) b) \(|x+1|=\sqrt{3}+2\) c) \(|x-\sqrt{3}|=\sqrt{3}-1\)
d) \(|1-2x|=\sqrt{5}-1\) e) \(|1-x|=\sqrt{2}-0,111...\) f) \(|x-\sqrt{2}|=1,44....\)
Bài này khó quá!!! Mọi người giúp mình với ạ, mình cần gấp lắm!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)
Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)
\(2^{3x+2}=4^{x+5}\)
\(\Rightarrow2^{3x+2}=\left(2^2\right)^{x+5}\)
\(\Rightarrow2^{3x+2}=2^{2x+10}\)
\(\Rightarrow3x+2=2x+10\)
\(\Rightarrow x=8\)
Bài làm:
Ta có: \(-\left(251.3+281\right)+3.251-\left(1-281\right)\)
\(=-251.3-281+3.251-1+281\)
\(=\left(-251.3+251.3\right)+\left(281-281\right)-1\)
\(=0-0-1=-1\)
- (251 * 3 + 281) + 3 * 251 - (1 - 281)
= -( 753+281) + 753 - -280
= -1034 + 753 - -280
= -281- -280
= -561
Bài làm:
Ta có: \(P=\frac{2x-1}{x-1}=\frac{\left(2x-2\right)+1}{x-1}=2+\frac{1}{x-1}\)
Để P đạt GTLN
=> \(\frac{1}{x-1}\) đạt GTLN => \(x-1\) đạt giá trị dương nhỏ nhất
Mà x nguyên => x - 1 nguyên
=> \(x-1=1\Rightarrow x=2\)
Vậy Max(P) = 3 khi x = 2
\(P=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)( ĐKXĐ : x khác 1 )
Để P đạt GTLN => \(\frac{1}{x-1}\)đạt GTNN
=> x - 1 là số dương nhỏ nhất
=> x - 1 = 1
=> x = 2 ( tmđk )
Vậy PMax = \(2+\frac{1}{2-1}=2+1=3\), đạt được khi x = 2
Mình không chắc nha -.-
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
Bài 1 :
Theo bài ra ta có : \(f\left(x\right)=2x^4-3x^2-2x^4+4x^3-2x+3x-15\)
\(=-3x^2+4x^3+x-15\)
\(g\left(x\right)=-4x^3-3x^4-2x+x^2+2+3x^4-12\)
\(=-4x^3-2x+x^2-10\)
\(f\left(x\right)+g\left(x\right)=-3x^2+4x^3+x-15-4x^3-2x+x^2-10\)
\(=-2x^2-x-25\)
\(g\left(x\right)-f\left(x\right)=-4x^3-2x+x^2-10+3x^2-4x^3-x+15\)
\(=-8x^3-3x+4x^2+5\)
Chị làm nốt mấy bài sau nhé, tương tự thôi
Bài 3 : a) \(M+3x^2y-4xy^2+5xy=9x^2y-7xy+6xy^2\)
\(M=\left(9x^2y-7xy+6xy^2\right)-\left(3x^2y-4xy^2+5xy\right)\)
\(M=9x^2y-7xy+6xy^2-3x^2y+4xy^2-5xy\)
\(M=\left(9x^2y-3x^2y\right)+\left(-7xy-5xy\right)+\left(6xy^2+4xy^2\right)\)
\(M=6x^2y-12xy+10xy^2\)
=> bậc của M là 3
b.
f(x) = 5x4 + 4x3 - 10x2 - 7x + 10
g(x) = 4x4 + 5x2 - 9x - 8
f(x) + g(x) = 9x4 + 4x3 - 5x2 - 16x + 2
Bài 4 : a.
f(x) = 2x5 - 7x4 + 3x3 - 10x + 1
g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7
b. f(x) = 2x5 - 7x4 + 3x3 - 10x + 1
g(x) = -9x5 - 2x4 + 15x3 + 5x2 + x + 7
f(x) + g(x) = -7x5 - 9x4 + 18x3 + 5x2 - 9x + 8
Trừ tương tự
Bài 5 cũng như bài 4
Ta có\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{990}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{990}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
hihihihi
a) \(\left|\sqrt{2}-x\right|=\sqrt{2}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{2}-x=\sqrt{2}\\\sqrt{2}-x=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\sqrt{2}\end{cases}}}\)
b) \(\left|x+1\right|=\sqrt{3}+2\)
\(\Rightarrow\orbr{\begin{cases}x+1=\sqrt{3}+2\\x+1=-\sqrt{3}-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+1\\x=-\sqrt{3}-3\end{cases}}\)