K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Ta có: \(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=1\frac{1}{5}\\\frac{xyz}{x+z}=1\frac{1}{12}\end{cases}}\)

=> \(\hept{\begin{cases}\frac{x+z}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{3}{2}\end{cases}}\)

 \(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\zx=3\end{cases}}\)

~ Đến đây bạn làm nốt nhé, tại mình có việc. Xin lỗi ~

# Chúc bạn học tốt #

5 tháng 1 2019

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=1\frac{1}{15}\\\frac{xyz}{x+z}=1\frac{1}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{15}{16}\\\frac{x+z}{xyz}=\frac{12}{13}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{15}{16}\\\frac{1}{xy}+\frac{1}{yz}=\frac{12}{13}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=16\\zx=13\end{cases}}\)

Phần còn lại bn tự làm nhé!

5 tháng 1 2019

Hoành độ giao điểm của (P) và (d) là nghiệm của pt:

 \(x^2=2\left(m-1\right)x+m^2+2m\)

\(\Leftrightarrow x^2-2\left(m-1\right)x-m^2-2m=0\)

\(\Delta'=\left(m-1\right)^2+m^2+2m=m^2-2m+1+m^2+2m\)

                                                           \(=2m^2+1>0\forall m\)

Nên (P) luôn cắt (d) tại 2 điểm phân biệt