Cho \(x+y=1\), \(x^2+y^2=2\) thì \(x^3+y^3\) bằng
A.2 B.1.5 C.2.5 D.3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Ta có: \(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=1\frac{1}{5}\\\frac{xyz}{x+z}=1\frac{1}{12}\end{cases}}\)
=> \(\hept{\begin{cases}\frac{x+z}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\zx=3\end{cases}}\)
~ Đến đây bạn làm nốt nhé, tại mình có việc. Xin lỗi ~
# Chúc bạn học tốt #
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=1\frac{1}{15}\\\frac{xyz}{x+z}=1\frac{1}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{15}{16}\\\frac{x+z}{xyz}=\frac{12}{13}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{15}{16}\\\frac{1}{xy}+\frac{1}{yz}=\frac{12}{13}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=16\\zx=13\end{cases}}\)
Phần còn lại bn tự làm nhé!