\(\sqrt{2x^2+2x}+\left(x-1\right)\sqrt{x}=x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si cho 3 số ta được
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân 2 vế của bất đẳng thức trên lại ta được đpcm
Dấu ''='' <=> a = b = c
ko dùng đến BĐT cauchy cx dc!
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=1+1+1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}\)
\(=3+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)
Ta có:\(\frac{a}{c}+\frac{c}{a}\ge2\),thật vậy:
Gỉa sử \(a\ge c\),khi đó:\(a=c+m\)
\(\Rightarrow\frac{a}{c}+\frac{c}{a}=\frac{c+m}{c}+\frac{c}{c+m}=1+\frac{m}{c}+\frac{c}{c+m}\ge1+\frac{m}{c+m}+\frac{c}{c+m}=1+\frac{m+c}{m+c}=1+1=2\)
Chứng minh tương tự,ta được:
\(\hept{\begin{cases}\frac{c}{b}+\frac{b}{c}\ge2\\\frac{a}{b}+\frac{b}{a}\ge2\end{cases}}\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{c}{b}+\frac{b}{c}\ge6\)
\(\Rightarrow3+\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{c}\ge9\left(đpcm\right)\)
bn tự kẻ hình nhé:
a) Xét tgiac IAB và tgiac ICA có:
góc I: chung
góc IAB = góc ICA (chắn cung AB)
suy ra: tgiac IAB = tgiac ICA (g.g)
=> IA/IC = IB/IA = AB/AC
=> IA/IC . IB/IA = AB/AC . AB/AC
=> IB/IC = AB^2/AC^2 (đpcm)
b) Theo câu a) ta có:
IA/IC = IB/IA = AB/AC = 5/7
Đặt: IA = 5k thì: IC = 7k; IB = 25/7 k
Ta có: IC - IB = BC
=> \(BC=7k-\frac{25}{7}k=\frac{24}{7}k\)
=> \(24=\frac{24}{7}k\)
=> \(k=7\)
Vậy IA = 5.7 = 35
IC = 7.7 = 49
\(x^4-18x^2+81=0\)
\(\Leftrightarrow\left(x^2\right)^2-2.9.x^2+9^2=0\Leftrightarrow\left(x^2-9\right)^2=0\)
\(\Leftrightarrow x^2-9=0\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
~ HỌC TỐT~