K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

B A C D M H F

a) Áp dụng định lí py-ta-go vào tam giác ABC , ta có :

\(BC^2=AB^2+AC^2\)

\(BC^2=3^2+4^2\)

\(\Leftrightarrow BC=\sqrt{9+16}=\sqrt{25}=5\left(cm\right)\)

b) Vì AM là đường trung tuyến 

Mà BC là cạnh huyền

=> AM = BM = CM 

MÀ AM = MD

=> AM = MD = BM = CM

<=> AM + MD = BM + MC

<=> AD = BC .

Xét tứ giác ABDC có : AD = BC và AD cắt BC tại trung điểm M của mỗi đường

=> ABDC là hình chữ nhật 

=> AB = CD ; AB // CD

10 tháng 8 2020

Ta có :\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

=> (2a + b)(c - 2d) = (a - 2b)(2c + d)

=> 2ac - 4ad + bc - 2bd = 2ac + ad - 4bc  - 2bd

=> -4ad + bc = ad - 4bc

=> -4ad - ad = -4bc - bc

=> -5ad = - 5bc

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)(đpcm)

10 tháng 8 2020

Theo bài ra ta có : 

\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Leftrightarrow\left(2a+b\right)\left(c-2d\right)=\left(2c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow2ac-4ad+bc-2db=2ca-4bc+da-2bd\)

\(\Leftrightarrow-5ad+5bc=0\Leftrightarrow-5ab=-5bc\)

\(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

10 tháng 8 2020

a, \(\left|x+\frac{1}{3}\right|=0\Leftrightarrow x=-\frac{1}{3}\)

b, \(\left|\frac{5}{18}-x\right|-\frac{7}{24}=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{18}-x=\frac{7}{24}\\\frac{5}{18}-x=-\frac{7}{24}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{72}\\x=\frac{41}{72}\end{cases}}\)

c, \(\frac{2}{5}-\left|\frac{1}{2}-x\right|=6\Leftrightarrow\left|\frac{1}{2}-x\right|=-\frac{28}{5}\)vô lí 

Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)*luôn dương* Mà \(-\frac{28}{5}< 0\)

=> Ko có x thỏa mãn 

10 tháng 8 2020

\(|x+\frac{1}{3}|=0\)

\(< =>x+\frac{1}{3}=0< =>x=-\frac{1}{3}\)

\(|x+\frac{3}{4}|=\frac{1}{2}\)

\(< =>\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)

10 tháng 8 2020

Ta có: \(A=\frac{60}{120}+\frac{30}{120}+\frac{20}{120}+\frac{15}{120}+\frac{12}{120}+\frac{10}{120}\)

\(A=\frac{147}{120}\)

Để A = 1 thì \(A=\frac{120}{120}\)mà \(\frac{147}{120}-\frac{120}{120}=\frac{27}{120}=\frac{15}{120}+\frac{12}{120}=\frac{1}{8}+\frac{1}{10}\)

Vậy để A = 1 thì ta phải loại 2 phân số \(\frac{1}{8}và\frac{1}{10}\)

10 tháng 8 2020

\(S=1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+1+\frac{1}{16}+1+\frac{1}{32}+1+\frac{1}{64}-7\)

\(S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}-1\)

Ta đặt:    \(P=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

=> \(2P=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

=> \(2P-P=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)

=> \(P=1-\frac{1}{64}\)

Mà    \(S=P-1\)

=> \(S=1-\frac{1}{64}-1=-\frac{1}{64}\)

Vậy \(S=-\frac{1}{64}\)

10 tháng 8 2020

Ta có :

M = ( a + b + c - d ) + ( a + b - c + d ) + ( a - b + c + d ) + ( -a + b + c + d )

= a + b + c - d + a + b - c + d + a - b + c + d - a + b + c + d 

= ( a + a + a - a ) + ( b + b - b + b ) + ( c - c + c + c ) + ( - d + d + d + d )

= 2a + 2b + 2c + 2d 

= 2 . ( a + b + c + d )

Thay a = 1 , b = 10 , c = 100 và d = 1000 vào biểu thức M có :

M = 2 .( 1 + 10 + 100 + 1000 )

M = 2 . 1111

M = 2222 

Vậy M = 2222 khi a = 1 , b = 10 , c = 100 và d = 1000 .

Học tốt

10 tháng 8 2020

\(M=\left(a+b+c-d\right)+\left(a+b-c+d\right)+\left(a-b+c+d\right)+\left(-a+b+c+d\right)\)

\(=a+b+c-d+a+b-c+d+a-b+c+d-a+b+c+d\)

\(=\left(a+b+c+d\right).3-\left(a+b+c+d\right)=2\left(a+b+c+d\right)\)

\(=2\left(1+10+100+1000\right)=2.1111=2222\)

10 tháng 8 2020

Bg

Ta có: x - y = x và x + y = y        (x, y \(\inℤ\))

Xét x - y = x:

=> x - x = y

=> 0 = y

Xét x + y = y:

=> x = y - y

=> x = 0

Vậy x = y = 0

10 tháng 8 2020

\(x-y=x\)và \(x+y=y\)

Cộng 2 vế lại với nhau ta được: \(x-y+x+y=x+y\)

\(\Leftrightarrow2x=x+y\)\(\Leftrightarrow x=y\)

mà \(x+y=y\)\(\Rightarrow x=0\)\(\Rightarrow x=y=0\)

Vậy \(x=y=0\)

10 tháng 8 2020

a) A = \(\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+....+\frac{10301}{100.103}\) (có 34 số hạng)

A = \(\frac{4+1}{1.4}+\frac{4.7+1}{4.7}+\frac{7.10+1}{7.10}+....+\frac{100.103+1}{103.100}\)

A = \(1+\frac{1}{1.4}+1+\frac{1}{4.7}+1+\frac{1}{7.10}+....+1+\frac{1}{100.103}\)

A = \(1.34+\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)

A = \(34+\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

A = \(34+\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

A = \(34+\frac{1}{3}\cdot\frac{102}{103}\)

A = \(34+\frac{34}{103}=\frac{3536}{103}\)

10 tháng 8 2020

bạn làm hộ mik câu B với