Cho hình vuông ABCD. I là một điểm thuộc BC. AI cắt CD tại M. kẻ DH và BK cùng vuông góc
với AI
a) Chứng minh: AH = BK. b) Chứng minh: DH.AI luôn không đổi khi I di động
trên cạnh BC.giúp vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}\) - \(\sqrt{5}\)
A = -\(\sqrt{2}\)(\(\dfrac{1-\sqrt{3}}{1-\sqrt{3}}\)) - \(\sqrt{5}\)
A = -\(\sqrt{2}\) - \(\sqrt{5}\)
đk x >= 0 ; x khác 4 ; 9
\(M=\dfrac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{1}{\sqrt{x}+1}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
b, \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+3}{\sqrt{x}-2}=1+\dfrac{3}{\sqrt{x}-2}\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\sqrt{x}-2\) | 1 | -1 | 3 | -3 |
x | 9 | 1 | 25 | loại |
c, \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-2\ge0\Leftrightarrow\dfrac{\sqrt{x}+1-2\sqrt{x}+4}{\sqrt{x}-2}\ge0\)
\(\Leftrightarrow\dfrac{5-\sqrt{x}}{\sqrt{x}-2}\ge0\Leftrightarrow\left\{{}\begin{matrix}x\le25\\x>4\end{matrix}\right.\Leftrightarrow4< x\le25\)
Kết hợp đk vậy 4 < x =< 25 ; x khác 9
a, \(M=\sqrt{2}-\sqrt{6-2\sqrt{5}}=\sqrt{2}-\left(\sqrt{5}-1\right)=\sqrt{2}-\sqrt{5}+1\)
b, \(N=-\sqrt{2}-\sqrt{5}\left(\sqrt{5}-\sqrt{2}\right)=-\sqrt{2}-5+\sqrt{10}\)
c, \(P=\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{3}\right)^2}\)
\(=2\sqrt{2}+\sqrt{3}+2\sqrt{2}-\sqrt{3}=4\sqrt{2}\)
- Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-20x+28}=a>0\\3x^2-15x+20=b>0\end{matrix}\right.\)
- Khi đó, ta có hệ:
\(\left\{{}\begin{matrix}a=b\\a^2-\dfrac{4}{3}b=\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a^2-\dfrac{4}{3}a=\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a^2-\dfrac{4}{3}a-\dfrac{4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left(a^2-\dfrac{4}{3}a+\dfrac{4}{9}\right)-\dfrac{16}{9}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left(a-\dfrac{2}{3}\right)^2-\dfrac{16}{9}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left(a-\dfrac{2}{3}-\dfrac{4}{3}\right)\left(a-\dfrac{2}{3}+\dfrac{4}{3}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left[{}\begin{matrix}a=2\\a=-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=b=2\left(nhận\right)\\a=b=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{4x^2-20x+28}=2\\3x^2-15x+20=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-20x+24=0\\3x^2-15x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x-2\right)\left(x-3\right)=0\\3\left(x-2\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
- Vậy \(S=\left\{2;3\right\}\)
\(2\sqrt{x^2-5x+7}=3x^2-15x+20\)
đk x^2 - 5x + 7 > 0
Đặt \(\sqrt{x^2-5x+7}\) = t
\(2t=3t^2-1\Leftrightarrow3t^2-2t-1=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)(tm)
áp dụng bđt Cosi cho các số a, b, c không âm, ta có:
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\left(1\right)\\a+c\ge2\sqrt{ac}\left(2\right)\\b+c\ge2\sqrt{bc}\left(3\right)\end{matrix}\right.\)
lấy (1) + (2) + (3) vế theo vế, ta được:
\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (đpcm)