Hai người đi xe mô tô, khởi hành cùng một lúc từ A đến B, cách nhau 100 dặm. Vận tốc của mỗi xe là các số nguyên. Hiệu hai vận tốc là một số nguyên tố. Sau khi đi được hai giờ thì khoảng cách từ chiếc xe chậm đến A bằng 5 lần khoảng cách từ chiếc xe nhanh đến B. Tính vận tốc mỗi xe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{b}=\frac{35}{49}=\frac{5}{7}\)\(\Rightarrow a=5k;b=7k\Rightarrow a+b=12k\)
\(\frac{c}{d}=\frac{130}{143}=\frac{10}{11}\Rightarrow c=10f;d=11f\)\(\Rightarrow c+d=21f\)
\(\frac{e}{g}=\frac{7}{13}\)\(\Rightarrow e=7n;g=13n\Rightarrow e+g=20n\)
gọi số tự nhiên lớn nhất đó là x
\(\Rightarrow x=12k=21f=20n\)
\(\Rightarrow x\in BCNN\left(12,21,20\right)=420\)
\(\Rightarrow x=420t\left(t\in N\right)\)
vì x là số có 3 chữ số lớn nhất nên với t = 2 ,ta được x = 840
vậy ...
a/ Đặt \(\sqrt{x^2+3}=a\ge0\)
\(\Rightarrow a=\frac{4}{a^2-2}\)
\(\Leftrightarrow a^3-2a-4=0\)
\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+2\right)=0\)
\(\Leftrightarrow a=2\)
\(\Rightarrow\sqrt{x^2+3}=2\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
b/ \(\hept{\begin{cases}x^2+y^2+z^2=1\left(1\right)\\x^3+y^3+z^3=1\left(2\right)\end{cases}}\)
Từ (1) \(\Rightarrow-1\le x,y,z\le1\)
Lấy (2) - (1)
\(\Rightarrow x^3+y^3+z^3-x^2-y^2-z^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Dễ thấy \(x^2\left(x-1\right),y^2\left(y-1\right),z^2\left(z-1\right)\le0\)
\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu = xảy ra khi \(\left(0,0,1;0,1,0;1,0,0\right)\)
\(\sqrt{x+3}+4\sqrt{x}-2x=6-\sqrt{5-x}\)
\(\Leftrightarrow\left(\sqrt{x+3}-2\right)+\left(4\sqrt{x}-4\right)-\left(2x-\sqrt{5-x}\right)=0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{4\left(x-1\right)}{\sqrt{x}+1}+\frac{\left(1-x\right)\left(4x+5\right)}{\sqrt{5-x}+2x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x+3}+2}+\frac{4}{\sqrt{x}+1}-\frac{\left(4x+5\right)}{\sqrt{5-x}+2x}\right)=0\)
\(\Leftrightarrow x=1\)
\(\Delta`=\left(y-1\right)^2-y^2+6y-1\ge0.\)
\(4y\ge0\)
dấu " =" khi và chỉ khi y=0
thay y = 0 vào pt 2 ta được
\(x^2-2x+1=0\Leftrightarrow x=1\)