Cho hàm số y=(2m-1)x+n-2=0
a, vẽ đồ thị vs m=1;n=2
b,Tìm m,n để đồ thị hàm số cắt oy tại điểm có tung độ=-căn 2 và cắt ox tại điểm có hoành độ =căn 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c\ge a,c\ge b\Rightarrow c\ge a+b\)(luôn đúng)
WTF!?!mấy cái dữ liện trên làm cảnh ak!?!
v:))
tử chia mẫu=\(1+\frac{1}{a}+\frac{2}{a^2}\) đặt 1/a =x ta có:
\(1+x+2x^2=2\left(x+\frac{1}{4}\right)^2+\frac{15}{8}\)còn lại tự giải nốt
Anh ko ghi lại đề nha em !
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\3x^2-5x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\x_1=1;x_2=\frac{2}{3}\end{cases}}\)( vn là vô nghiệm nha )
Vậy : x = 1 hoặc x = 2/3
\(\left(x^2+1\right).\left(3x^2-5x+2\right)=0\)
\(x^2\ge0\Rightarrow x^2+1\ge1\)
\(\RightarrowĐể\left(x^2+1\right).\left(3x^2-5x+2\right)=0\)
\(\Rightarrow3x^2-5x+2=0\Rightarrow3x^2-3x-2x+2=0\)
\(\Rightarrow3x.\left(x-1\right)-2.\left(x-1\right)=0\Rightarrow\left(3x-2\right).\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{2}{3}\end{cases}}\)
nối BE , CD
=> \(\widehat{BEC}=90,\widehat{CDB}=90\)
MÀ \(\widehat{ACB}=\widehat{ABC}=60\)
=>\(\widehat{CBE}=\widehat{BCD}=90-60=30\)
=> CUNG CE = CUNG BD
VÌ TAM GIÁC ĐỀU => CE VỪA LÀ ĐƯỜNG CAO CŨNG LÀ PHÂN GIÁC => CUNG BD = CUNG DE
a, BH//CD( do cùng vuông góc với AC)
BD//CH (cùng vuông góc với AB)
nên BHCD là hbh
b, vì BHCD là hbh => hai đường chéo cắt nhau tại trung điểm mỗi đường
mà I là trung điểm BC => HD đi qua I => H,I,D thẳng hàng
c, áp dụng đường trung bình cho tam giác ADH
có O là trung điểm và I là trung điểm
a) \(\Delta ACD\)nội tiếp (O) có AB là đường kính => \(\Delta ACD\)vuông ở C
\(\Rightarrow CD\perp AC\)
Mà \(BH\perp AC\)(H là trực tâm của \(\Delta ABC\))
\(\Rightarrow BH//CD\)
CMTT ta có \(CH//BD\)
=>BHCD là hbh
b)có BHCD là hbh ( câu a)
mà I là trung điểm của đường chéo BC
=> I là trung điểm của đường chéo HD
=> H, I, D thẳng hàng
c) Trong \(\Delta ADH\)có
I là trung điểm của HD
O là trung điểm của AD
=> OI là đường trung bình của\(\Delta ADH\)
=>OI = 1/2 AH
Đường thẳng: y = ax + b đi qua 2 điểm A và B nên ta có:
\(\hept{\begin{cases}2a+b=3\\-2a+b=1\end{cases}}\)<=> \(\hept{\begin{cases}2a+b=4\\-2a+b+2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}2a+b=3\\2b=4\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{1}{2}\\b=2\end{cases}}}\)
Vậy....