K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

a) Với mọi số thực x ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)

Tương tự \(y^2+1\ge2y,z^2+1\ge2z\)

Cộng theo vế các bất phương trình trên ta có0:

 \(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

\(\Leftrightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi và chỉ khi x=y=z=1

b) \(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)

Vì x>y => x-y >0. Áp dụng bất đẳng thức cosi cho x-y>0 và 2/(x-y) >0. Ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)

14 tháng 1 2019

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

14 tháng 1 2019

ai biết làm giúp với

14 tháng 1 2019

ĐK: x khác 0

\(\hept{\begin{cases}x\left(x+y\right)+x=3\\x^2\left(x+y\right)^2+x^2=5\end{cases}}\)

Đặt: x(x+y)=u, x=v

Ta có hệ mới :

\(\hept{\begin{cases}u+v=3\\u^2+v^2=5\end{cases}}\)Hệ phương trình đối xứng loại 1, em làm tiếp nhé!

14 tháng 1 2019

554554544

13 tháng 1 2019

a, Khi a = 1 thì pt trở thành

\(x^2-0x-1+1-2=0\)

\(\Leftrightarrow x^2-2=0\)

\(\Leftrightarrow x=\pm2\)

b, Pt có 2 nghiệm  phân biệt khi

\(\Delta>0\Leftrightarrow\left(a-1\right)^2-4\left(-a^2+a-2\right)>0\)

           

            \(\Leftrightarrow a^2-2a+1+4a^2-4a+2>0\)

             \(\Leftrightarrow5a^2-6a+3>0\)

            \(\Leftrightarrow5\left(a^2-\frac{6}{5}a+\frac{9}{25}\right)+\frac{6}{5}>0\)

            \(\Leftrightarrow5\left(a-\frac{3}{5}\right)^2+\frac{6}{5}>0\)(Luôn đúng)

Nên pt đã cho luôn có 2 nghiệm p/b

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=a-1\\x_1.x_2=-a^2+a-2\end{cases}}\)

Ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                       \(=\left(a-1\right)^2+2a^2-2a+2\)

                        \(=a^2-2a+1+2a^2-2a+2\)

                        \(=3a^2-4a+3\)

                        \(=3\left(a^2-\frac{4}{3}a+\frac{4}{9}\right)+\frac{5}{3}\)

                         \(=3\left(a-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}\)

Dấu "=" khi \(a=\frac{2}{3}\)

Vậy /............./