Thu gọn biểu thức :\(A=\frac{x^4-2x^2+1}{x^3-3x-2}\)
Giúp mình nha!~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai bạn nhé. Phải là BD=2AD nhà. Nếu như đề trên thì nó là hình thang chứ ko phải hbh
a, 15p = 0,25
Q đg từ nhà đến trường là: 6.0,25=1,5km
b, 10p=1/6h
V=1,5:1/6=9 mk/h
c, Vtb= (1,5.2)/(0,25+1/6)=7,2 km/h
a, M; D là trung điểm của AB, BC (gT)
=> MD là đường trung bình của tam giác ABC (đn)
=> MD // AC (đl)
=> góc BAC = góc MDB (đv)
góc BAC = 90 do
=> góc MDB = 90 và D là trung điểm của ME (gt)
=> M đx E qua AB
b, MD là đtb của tam giác ABC (Câu a)
=> MD = 1/2AC (Đl)
MD = DE do D là trung điểm của ME
=> MD + DE = 1/2AC + 1/2AC
=> ME = AC
có ME // AC (Câu a)
=> AEMC là hình bình hành
+có ME _|_ AB (Câu a)
=> AEBM là hình thoi
c, M là trung điểm của BC (gt)
=> MB = 1/2BC (tc)
BC = 4 cm (Gt)
=> MB = 1/2.4 = 2 (cm)
AEBM là hình thoi (Câu b) => AM = MB = ME = AE (đn)
=> C_AEBM =2.4 = 8 (cm)
d, Để AEBM là hình vuông
AEBM là hình thoi (Câu b)
<=> góc AMB = 90
<=> AM _|_ BC
AM là trung tuyến
<=> tam giác ABC vuông cân tại A
A B C D M E
a) Ta có MB = MC, DB = DA
=> MD là đường trung bình của ΔABC
=> MD // AC
Mà AC ⊥ AB
=> MD ⊥ AB.
Mà D là trung điểm ME
=> AB là đường trung trực của ME
=> E đối xứng với M qua AB.
b) + MD là đường trung bình của ΔABC
=> AC = 2MD.
E đối xứng với M qua D
=> D là trung điểm EM
=> EM = 2.MD
=> AC = EM.
Lại có AC // EM
=> Tứ giác AEMC là hình bình hành.
+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.
Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.
c) Ta có: BC = 4cm => BM = 2cm
Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm
d)
Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM
<=> ΔABC có trung tuyến AM là đường cao
<=> ΔABC cân tại A.
Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.
Ta có:
A = \(\frac{x^4-2x^2+1}{x^3-3x-2}\)
A = \(\frac{\left(x^2-1\right)^2}{x^3-4x+x-2}\)
A = \(\frac{\left[\left(x-1\right)\left(x+1\right)\right]^2}{x\left(x^2-4\right)+\left(x-2\right)}\)
A = \(\frac{\left(x-1\right)^2\left(x+1\right)^2}{x\left(x-2\right)\left(x+2\right)+\left(x-2\right)}\)
A = \(\frac{\left(x-1\right)^2\left(x+1\right)^2}{\left(x-2\right)\left(x^2+2x+1\right)}\)
A = \(\frac{\left(x-1\right)^2\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)^2}\)
A = \(\frac{\left(x-1\right)^2}{x-2}\)= \(\frac{x^2-2x+1}{x-2}\)