1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và ea) chứng minh tứ giác bdmc, adhm...
Đọc tiếp
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N
a) chứng minh tứ giác BMHD, BMEC nội tiếp
b) chứng minh MC là tia phân giác của góc EMD
c) chứng minh H và N đối xứng với nhau qua BC
d) chứng minh OC vuông góc BE
2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e
a) chứng minh tứ giác bdmc, adhm nội tiếp
b) chứng minh ef//md
c) vẽ đường kính bk của (o). chứng minh ah=ck
d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)
3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e
a) chứng minh tứ giác mnhc, bdnc nội tiếp
b) chứng minh h và e đối xứng với nhau qua bc
c) chứng minh oa vuông góc dn
d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng
A B C O O' H P M E F G I K Q T S A 0 R
a) Gọi O' là đối xứng của O qua B ta có O'B=R (không đổi). Dựng đường tròn (O',R) thì (O') cố định.
Ta sẽ chứng minh M thuộc (O'). Thật vậy:
Xét \(\Delta\)ABO và \(\Delta\)MBO' có: ^ABO = ^MBO' (Đối đỉnh); BO=BO'; BA=BM => \(\Delta\)ABO = \(\Delta\)MBO' (c.g.c)
=> OA = O'M (2 cạnh tương ứng). Mà OA = R nên O'M = R => M thuộc đường tròn (O';R)
Vậy M luôn nằm trên (O';R) cố định (đpcm).
b) Lấy T là trung điểm đoạn AH. Kẻ đường kính FR của (O). Gọi EF cắt AG tại K.
Dễ thấy IT là đường trung bình trong \(\Delta\)AHC => IT // AC => IT vuông góc AB (Do ^BAC=900)
Xét \(\Delta\)BAI: AH vuông góc BI; IT vuông góc AB (cmt), T thuộc AH => T là trực tâm \(\Delta\)BAI
=> BT vuông góc AI. Xét \(\Delta\)MAH: T trung điểm AH, B trung điểm AM => BT // MH
Do đó: AI vuông góc MH hay AG vuông góc EF tại K. Áp dụng ĐL Pytagore:
\(AF^2+FG^2+GE^2+EA^2=2\left(KA^2+KF^2+KG^2+KE^2\right)=2\left(AF^2+GE^2\right)\)(*)
Ta có EF vuông góc ER và EF vuông góc AG => AG // ER => Tứ giác AERG là hình thang cân => GE = AR
Từ đó (*) trở thành: \(AF^2+FG^2+GE^2+EA^2=2\left(AF^2+AR^2\right)=2\left(2R\right)^2=8R^2=const\)
Vậy biểu thức trên có giá trị ko đổi khi A di chuyển (đpcm).
c) Kẻ HQ vuông góc cạnh AC. Gọi S là tâm ngoại tiếp \(\Delta\)BCP. Gọi bán kính đường rtonf (BCP) là R0
Ta có: AP.AB = AQ.AC (=AH2) (Theo hệ thức lượng) => Tứ giác BPQC nội tiếp hoặc Q nằm trên (BCP)
=> S nằm trên trung trực của PQ. Dễ có T là trung điểm PQ (Vì tứ giác APHQ là hcn)
Nên ST vuông góc PQ tại T. Theo ĐL Pytagore (cho \(\Delta\)PTS) có: \(R_0=SP=\sqrt{PT^2+ST^2}\)(1)
Mặt khác: ^OAC = ^OCA = ^APQ => OA vuông góc PQ. Mà ST vuông góc PQ => OA // ST
Kết hợp với AT // OS (Cùng vuông góc BC) => Tứ giác ATSO là hbh => ST = OA = R (2)
Từ (1) và (2) => \(R_0=\sqrt{PT^2+R^2}=\sqrt{\frac{AH^2}{4}+R^2}\)(Vì PT=PQ/2=AH/2)
=> R0 lớn nhất <=> AH lớn nhất <=> A là điểm chính giữa cung BC của (O). Khi đó AH < R
Vậy nên \(R_0\le\sqrt{\frac{R^2}{4}+R^2}=\frac{R\sqrt{5}}{2}=const\). Đạt được khi A trùng với trung điểm cung BC (A0).