Gpt : \(x^2\)\(+\)\(6\)\(=\) \(4\sqrt{x^3-2x^2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : ( 2x - 1 )2020 = ( 2x - 1 )2021
=> ( 2x - 1 )2021 - ( 2x - 1 )2020 = 0
=> ( 2x - 1 )2020 . [( 2x -1 )1 - 1 ] = 0
=> 2x - 1 = 0 2x = 1 x = 1/2
hoặc => =>
2x - 1 = 1 2x = 2 x =1
Vậy x = 1 hoặc x = 1/2
Số kẹo của chị là:
54x2= 108 (Viên kẹo)
ĐS:108 viên kẹo
Mong cậu ti-ck chi mik
a) (x+3)² + (4+x)(4-x) = 10
x² + 6x + 9 + 16- x² = 10
6x + 25 = 10
6x = -15
x = -15/6
b) 9(x+1)² - (3x-2)(3x+2) = 10
9x² + 18x + 9 - 9x² + 4 =10
18x + 13 = 10
18x = -3
x = -1/6
a) ( x + 3 )2 + ( 4 + x )( 4 - x ) = 10
⇔ x2 + 6x + 9 + 16 - x2 = 10
⇔ 6x + 25 = 10
⇔ 6x = -15
⇔ x = -15/6 = -5/2
b) 9( x + 1 )2 - ( 3x - 2 )( 3x + 2 ) = 10
⇔ 9( x2 + 2x + 1 ) - ( 9x2 - 4 ) = 10
⇔ 9x2 + 18x + 9 - 9x2 + 4 = 10
⇔ 18x + 13 = 10
⇔ 18x = -3
⇔ x = -3/18 = -1/6
x2 + xy + 5x + 5y = ( x2 + xy ) + ( 5x + 5y ) = x( x + y ) + 5( x + y ) = ( x + y )( x + 5 )
x2 - y2 + 3x - 3y = ( x2 - y2 ) + ( 3x - 3y ) = ( x - y )( x + y ) + 3( x - y ) = ( x - y )( x + y + 3 )
x² + xy + 5x + 5y
= (x²+ xy) + ( 5x+5y)
= x(x+y) + 5(x+y)
= (x+y)(x+5)
x² - y² + 3x - 3y
= (x² - y²) + ( 3x -3y)
= (x-y)(x+y) + 3(x-y)
= (x-y)(x+y+3)
chúc bạn học tốt ^^
\(A=\frac{x}{y}.\frac{x}{y^2}=\frac{x^2}{y^3}\left(\text{vì }x>0;y< 0\text{ nên: }\frac{x}{y^2}>0\right)\)
\(A=\frac{x}{y}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{x}{y}\cdot\frac{\sqrt{x^2}}{\sqrt{y^4}}=\frac{x}{y}\cdot\frac{\left|x\right|}{\left|y^2\right|}=\frac{x}{y}\cdot\frac{x}{y^2}=\frac{x^2}{y^3}\)( x > 0 ; y < 0 )
\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\sqrt{2007}+\sqrt{2006}}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vì \(\sqrt{2006}+\sqrt{2005}< \sqrt{2007}+\sqrt{2006}\)
Nên \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vậy \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
a) \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
ĐKXĐ : x ≥ 0
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(x-4\right)\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=0\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}+x+2\right)=0\)
⇔ \(7\left(\sqrt{x}-2\right)=0\)
⇔ \(\sqrt{x}-2=0\)
⇔ \(\sqrt{x}=2\)
⇔ \(x=4\)( tm )
b) \(\frac{\sqrt{x}+5}{\sqrt{x}-4}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne16\end{cases}}\)
⇔ \(\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)\)
⇔ \(x+8\sqrt{x}+15=x-6\sqrt{x}+8\)
⇔ \(x+8\sqrt{x}-x+6\sqrt{x}=8-15\)
⇔ \(14\sqrt{x}=-7\)
⇔ \(\sqrt{x}=-2\)( vô lí )
=> Phương trình vô nghiệm