Với a,b > 0 ; a + b < 1 . CMR: \(P=a+b++\frac{1}{a^2}+\frac{1}{b^2}\ge9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(0< x< 1\Rightarrow x^{n-1}< 1\)
\(\Rightarrow1-x^{n-1}>0\)
Xét hiệu \(x-x^n=x\left(1-x^{n-1}\right)>0\)
Nên \(x>x^n\left(đpcm\right)\)
Sau này có gì cứ nhờ Incursion_03 nha. A cũng nhờ bạn ấy suốt ah :P
Có 100 HS nên mỗi HS ứng với 1%.
Số HS học cả tiếng Pháp và tiếng Đức là:
(69 + 79) - 100 = 48 (HS)
Số HS học cả tiếng Nhật và tiếng Anh là:
(89 + 99) - 100 = 88 (HS)
Số HS học cả bốn thứ tiếng là:
(48 + 88) - 100 = 36 (HS)
36 HS = 36%
Làm sai kìa !
Cái chỗ \(\left|\sqrt{x-2}-5+3-\sqrt{x-2}\right|\ge2\) chứ ? Trị tuyệt đối luôn dương mà
Cái trên là vừa phát hiện trong khi giải cái dưới
Vấn đề là giá trị của x cơ
gọi số học sinh là x(hs;x∈N*)
số ghế dài là y(ghế;y∈N*)
vì khi xếp mỗi ghế 3 học sinh thì 6 học sinh không có ghế ngồi
nên ta có phương trình x -3y = 6(1)
vì xếp mỗi ghế 4 học sinh thì thừa 1 ghế
ta có pt x = 4(y-1)
<=> x - 4y = -4(2)
từ (1)(2)ta có hpt
x-3y=6 và x-4y = -4 <=> x =36 ; y=10(tm)
a, Gọi pt đường thẳng (d1) có dạng là y = ax + b
Do (d1) có tung độ gốc bằng 10
=>b = 10
=> (d1) y = ax + 10
Vì (d1) // (d) => a = a' và b khác b'
<=> a = 4 và 10 khác 0 (Luôn đúng)
=> (d1) y = 4x + 10
b,Gọi pt đường thằng (d2) là y = mx + n
Vì (d2) vuông với (d) nên \(4m=-1\Leftrightarrow m=-\frac{1}{4}\)
\(\Rightarrow\left(d_2\right)y=-\frac{1}{4}x+n\)
Vì (d2) cắt trục Ox tại điểm có hoành độ bằng 8 nên (d2) đi qua điểm (8;0)
Khi đó \(0=-\frac{1}{4}.8+n\)
\(\Leftrightarrow n=2\)
\(\Rightarrow\left(d_2\right)y=-\frac{1}{4}x+2\)
\(C,\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\left(#\right)\end{cases}}\)
\(\Rightarrow3y-\left|y-2\right|=2\)(1)
*Nếu y > 2 thì
\(\left(1\right)\Leftrightarrow3y-y+2=2\)
\(\Leftrightarrow y=0\)(Loại do ko tm KĐX)
*Nếu y < 2 thì
\(\left(1\right)\Leftrightarrow3y-2+y=2\)
\(\Leftrightarrow y=1\)(Tm KĐX)
Thay y = 1 vào (#) được \(\left|x-1\right|+3=3\)
\(\Leftrightarrow x=1\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(A,ĐKXĐ:x\left(y+1\right)>0\)
\(\hept{\begin{cases}x+y=5\left(1\right)\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}=2\left(2\right)\end{cases}}\)
Giải (2)
Có bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)
Nên \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y+1\)
Thế x = y + 1 vảo pt (1) được
\(y+1+y=5\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2+1=3\)
Thấy x = 3 ; y = 2 thỏa mãn ĐKXĐ
Vậy hệ có ngihiemej \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Nếu dùng đạo hàm thì làm thế này
Có \(P=a+b+\frac{1}{a^2}+\frac{1}{b^2}\ge2\sqrt{ab}+\frac{2}{ab}\left(Cauchy\right)\)
(Dấu '=' khi a = b)
Đặt \(0< t=\sqrt{ab}\le\frac{a+b}{2}\le\frac{1}{2}\)thu được
\(P\ge f\left(t\right)=2y+\frac{2}{t^2}=16t+16t+\frac{2}{t^2}-30t\)
\(\Rightarrow f\left(t\right)\ge3\sqrt[3]{2^9}-\frac{30}{2}=24-15=9\)
Dấu "=" khi \(t=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\)