giải phương trình : \(\sqrt{x-1+2\sqrt{x-2}}+x+1=5\sqrt{x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm
Làm câu 2 trước vậy , câu 1 để sau
a, pt có nghiệm \(x=2-\sqrt{3}\)
\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)
\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)
Vì VP là số hữu tỉ
=> VT là số hữu tỉ
Mà \(\sqrt{3}\)là số vô tỉ
=> 4a + b + 15 = 0
=> 7a + 2b + 25 = 0
Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)
Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)
b, Với a = -5 ; b = 5 ta có pt:
\(x^3-5x^2+5x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)
Giả sử x1 = 1 là 1 nghiệm của pt ban đầu
x2 ; x3 là 2 nghiệm của pt (1)
Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)
Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)
\(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)
\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)
\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)
\(\Leftrightarrow x^5_2+x_3^5+4=728\)
\(\Leftrightarrow x_2^5+x_3^5=724\)
Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
\(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)
\(=1+724\)
\(=725\)
Vậy .........
Câu 1 đây , lừa người quá
Giả sử pt có 2 nghiệm x1 ; x2
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)
\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)
Lại có \(x_1+x_2=m^2\inℕ^∗\)
Mà x1 hoặc x2 nguyên
Nên suy ra \(x_1;x_2\inℕ^∗\)
Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)
\(\Leftrightarrow2m+2-m^2+1\ge0\)
\(\Leftrightarrow-1\le m\le3\)
Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)
Thử lại thấy m = 3 thỏa mãn
Vậy m = 3
mình có thể chia cả 2 vế cho x3
được]
1−3x±2√(1x+2x2)−6x2=0
]
sau đó dặt √(1x+2x2)=t
được 1±3t2+2t3=0]
Câu a) tự làm nhé ==* chưa làm được
A E B F C D c a b
Gọi F là tiếp điểm của đường tròn (I) với BC.
Theo tính chất của hai tiếp tuyến cắt nhau, ta có:
AE = AD
BE = BF
CD = CF
Mà: AE = AB – BE
AD = AC – CD
Nên: AE + AD = ( AB – BE ) + ( AC – CD ) = AB + AC – ( BE + CD )
= AB + AC – (BF + CF) = AB + AC – BC
Suy ra: AE + AD = c + b – a
Hay: AE = AD = \(\frac{\left(c+b-a\right)}{2}\)
Không thắng được đâu bạn êi
Có khi còn thua ấy
VN phải kéo dài thời gian đển loạt sút penalty thì may ra win
Nhưng vẫn phải cổ vũ VN nha ae êi
Mình cũng đồng tình rằng cổ vũ Việt Nam
Nhưng mình nghĩ là không đến mức 5 - 0 đâu
MVĐ !!! Việt Nam 2 - 1 Nhật Bản
Lời giải:
Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\)
Phương trình đã cho tương đương với: \(\sqrt{3t+1}-4t+3=0\)
Đặt \(\sqrt{3t+1}=u\Rightarrow t=\frac{u^2-1}{3}\)
Phương trình trở thành: \(u-\frac{4\left(u^2-1\right)}{3}+3=0\)
\(\Leftrightarrow u-\frac{4u^2}{3}-\frac{5}{3}=0\Leftrightarrow\frac{-4u^2+3u-5}{3}=0\)
\(\Leftrightarrow-4u^2+3u-5=0\)
Đến đây bí! Alibaba!
Nhầm tí:
Đặt \(\sqrt{3t+1}=u\Rightarrow t=\frac{u^2-1}{3}\) (u >= 0)
Phương trình trở thành: \(u-\frac{4\left(u^2-1\right)}{3}+3=0\)
\(\Leftrightarrow u-\frac{4u^2}{3}+\frac{4}{3}+3=0\)
\(\Leftrightarrow\frac{-4u^2+3u+13}{3}=0\Leftrightarrow-4u^2+3u+13=0\)
Đấy đây bí,alibaba!