K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

Ta có: \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=\sqrt{8\left(a^2+ab+2ab+2ac\right)}=2\cdot\sqrt{2\left(a+b\right)\left(a+2c\right)}\)

\(\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)

Tương tự\(\hept{\begin{cases}\sqrt{8b^2+56}\le2a+3b+2c\\\sqrt{4c^2+7}=\sqrt{4c^2+ab+2ac+2bc}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\end{cases}}\)

=> Q>

Dấu "=" <=> \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)

31 tháng 1 2020

Cái này nãy tui mới làm ở bên h_ọ_c_24 ý.

\(x\left(x-1\right)^2\ge4-x\)

\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)

\(\Leftrightarrow x^3-2x^2+x\ge4-x\)

\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow x-2\ge0\left(Vì:x^2+2>0\forall x\right)\)

\(\Leftrightarrow x\ge2\)

Vậy \(S=\left\{2;+\infty\right\}\)

1 tháng 2 2020

@ Băng Băng @ Mình không kí hiệu tập nghiệm như vậy nhé em:

S = [ 2; \(+\infty\))