Cho biểu thức:
\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A khi x = -3 và y = 2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dư của f(x) chia cho x+1 là r
Áp dụng định lý Bezout ta có:
f(x) chia cho x+1 dư r \(\Rightarrow r=f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+...+\left(-1\right)^{100}\)
\(\Leftrightarrow r=100\)
Vậy số dư của đa thức f(x) cho x+1 là 100
\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=3\end{cases}}\)
Chọn ( B )
Câu a bạn xét giá trị riêng nha
A=x2(y-z) + y2(z-x) + z2(x-y)
Thay x bởi y, ta có
A= y2 (y-z) + y2(z-y) + z2(y-y) = 0
=> A chứa nhân tử x-y
Tương tự A chứa nhân tử y-z, z-x
=> A có tích (x-y)(y-z)(z-x)
Ta thấy biểu thức A có bậc 3, tích (x-y)(y-z)(z-x) cũng có bậc là 3 nên A có dạng tổng quát: A= k(x-y)(y-z)(z-x) ( k thuộc R)
Ta có đẳng thức : x2(x-y) + y2(z-x) +z2( x-y) = k(x-y)(y-z)(z-x) với mọi x,y,z
Cho x=0,y=1,z=2 => -2 = 2k => k=-1
Vậy A= -(x-y)(y-z)(z-x)
b) a7 + a +1 = a7 + a6 - a6 - a5 +a5 + a4 -a4 - a3 + a3 + a2 +a +1
= a6 (a+1) - a5 (a+1) +a4 (a+1) -a3 (a+1) +a2(a+1) +(a+1)
=(a+1)( a6 - a5 + a4 - a3 + a2 +1)
Bài giải
\(\frac{x}{2}=\frac{y}{3}=\frac{3x}{6}=\frac{3x-y}{6-3}=\frac{3x-y}{3}\)
\(\Rightarrow\text{ }\left(\frac{x}{2}\right)^3=\left(\frac{y}{3}\right)^3=\left(\frac{3x-y}{3}\right)^3=\frac{x^3}{8}=\frac{y^3}{27}=\frac{\left(3x-y\right)^3}{27}=\frac{-27}{27}=-1\)
\(\Rightarrow\text{ }y^3=-1\cdot27=-27\)\(\Rightarrow\text{ }y=-3\)
\(\Rightarrow\text{ }\text{ }x^3=-1\cdot8=-8\text{ }\Rightarrow\text{ }x=-2\)
Ta có:
(3x-y)3=-27
\(\Leftrightarrow\left(3x-y\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow3x-y=-3\)
Ta có:
\(\frac{x}{2}=\frac{y}{3\text{}}\)
\(\frac{3x}{6}=\frac{y}{3\text{}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{3x}{6}=\frac{y}{3\text{}}=\frac{3x-y}{6-3}=\frac{-3}{3}=-1\)
\(\Rightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
Vậy....................
a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014