K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

Ta có: \(VT=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4a-4b+8\)

\(\ge2\sqrt{\frac{a^2}{b-1}.4\left(b-1\right)}+2\sqrt{\frac{b^2}{a-1}.4\left(a-1\right)}-4a-4b+8\)

\(=2.2a+2.2b-4a-4b+8\)

\(=\left(4a-4a\right)+\left(4b-4b\right)+8=8^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(\frac{a^2}{b-1}=4\left(b-1\right);\frac{b^2}{a-1}=4\left(a-1\right)\)

\(\Leftrightarrow a^2=b^2=4\Leftrightarrow a=b=2\)(t/m)

29 tháng 1 2019

Easy!

\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(=\sqrt{\frac{3}{2}}\left[\sqrt{\left(a+b\right).\frac{2}{3}}+\sqrt{\left(b+c\right).\frac{2}{3}}+\sqrt{\left(c+a\right).\frac{2}{3}}\right]\) (*)

Áp dụng BĐT Cô si ngược,ta có: 

(*) \(\le\sqrt{\frac{3}{2}}\left[\frac{a+b+\frac{2}{3}}{2}+\frac{b+c+\frac{2}{3}}{2}+\frac{c+a+\frac{2}{3}}{2}\right]\)

\(=\sqrt{\frac{3}{2}}\left(a+b+c+1\right)=\sqrt{\frac{3}{2}}.2=\sqrt{6}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a+b=b+c=c+a=\frac{2}{3}\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)

29 tháng 1 2019

\(ĐK:-1\le x\le2\)

\(PT< =>\sqrt{\left(x+1\right)\left(2-x\right)}-\frac{3}{2}+2x^2-2x-1+\frac{3}{2}=0\)

\(< =>\frac{-x^2+x+2-\frac{9}{4}}{\sqrt{\left(x+1\right)\left(2-x\right)}+\frac{3}{2}}+2x^2-2x+\frac{1}{2}=0\)

\(< =>\frac{-\left(x-\frac{1}{2}\right)^2}{\sqrt{\left(x+1\right)\left(2-x\right)}+\frac{3}{2}}+2\left(x-\frac{1}{2}\right)^2=0\)

\(< =>\left(x-\frac{1}{2}\right)^2\left(\frac{-1}{\sqrt{\left(x+1\right)\left(2-x\right)}+\frac{3}{2}}+2\right)=0\)

\(< =>\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\frac{-1}{\sqrt{\left(x+1\right)\left(2-x\right)}+\frac{3}{2}}+2=0\left(VL\right)\end{cases}}\)

\(< =>x=\frac{1}{2}\left(N\right)\)

Vậy S={1/2}

3 tháng 2 2019

\(1,\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\left(1\right)\\3x^2-2y^2+5xy-17x-6y+20=0\left(2\right)\end{cases}}\)

Giải (1) : \(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Coi pt trên là pt bậc 2 ẩn x

Có \(\Delta'=\left(y+19\right)^2-50y^2+60y-410\)

           \(=-49y^2+98y-49\)

           \(=-49\left(y-1\right)^2\)

pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                      \(\Leftrightarrow-49\left(y-1\right)^2\ge0\)

                      \(\Leftrightarrow y=1\)

Thế vào pt (2) được x = 2

           

3 tháng 2 2019

\(2,\)Đặt\(\left(a\sqrt{a};b\sqrt{b};c\sqrt{c}\right)\rightarrow\left(x;y;z\right)\left(x,y,z>0\right)\)

\(\Rightarrow xy+yz+zx=1\)

Khi đó \(P=\frac{x^4}{x^2+y^2}+\frac{y^4}{y^2+z^2}+\frac{z^4}{x^2+z^2}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(x;y;z>0\right)\left(Cauchy-engel-type_3\right)\)được

\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

Áp dụng bđt x2 + y2 + z2 > xy + yz + zx (tự chứng minh) ta được

\(P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{xy+yz+zx}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy+yz+zx=1\\x=y=z\end{cases}}\)

                        \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

                        \(\Leftrightarrow\sqrt{a^3}=\sqrt{b^3}=\sqrt{c^3}=\frac{1}{\sqrt{3}}\)

                       \(\Leftrightarrow a^3=b^3=c^3=\frac{1}{3}\)

                       \(\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

29 tháng 1 2019

Xét pt \(x^2+xy+y^2-y=0\)    (1)

Coi pt trên là pt bậc 2 ẩn x , tham số y

\(\Delta_x=y^2-4y^2+4y\)

     \(=-3y^2+4y\)

Pt có nghiệm \(\Leftrightarrow\Delta_x\ge0\)

                   \(\Leftrightarrow-3y^2+4y\ge0\)

                   \(\Leftrightarrow0\le y\le\frac{4}{3}\)

                    \(\Rightarrow y^2\le\frac{16}{9}\)

Pt (1) được viết lại dưới dạng \(y^2+y\left(x-1\right)+x^2=0\)

Coi pt trên là pt bậc 2 ẩn y, tham số x

Có \(\Delta_y=\left(x-1\right)^2-4x^2\)

          \(=x^2-2x+1-4x^2\)

          \(=-3x^2-2x+1\)

Pt có nghiệm khi \(\Delta_y\ge0\)

                      \(\Leftrightarrow-3x^2-2x+1\ge0\)

                       \(\Leftrightarrow-1\le x\le\frac{1}{3}\)

                       \(\Rightarrow x^3\le\frac{1}{27}\)

Khi đó \(x^3+y^2\le\frac{1}{27}+\frac{16}{9}=\frac{49}{27}< 2\)

=> Hpt vô nghiệm

28 tháng 1 2019

\(2018\left(a+b\right)=ab\)

Tpcm: \(\sqrt{a+b}=\sqrt{a-2018}-\sqrt{b-2018}\)

\(\Leftrightarrow2018=-\sqrt{ab-2018\left(a+b\right)+2018^2}\)với a>b

\(\Rightarrow2018=-2018\)(vô lý) 

=> Đề bì có vấn đề? 

28 tháng 1 2019

Bạn vào câu hỏi tương tự ý , có 1 bạn tên giống hệt bạn từng trả lời rồi đấy !

28 tháng 1 2019

Bạn tham khảo nha ! Lick : https://olm.vn/hoi-dap/detail/185482794083.html

Câu hỏi của Kudo - Toán lớp 9 - Học toán với OnlineMath

Chúc bạn học tốt !