K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x^2-8x+15\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le-5\\x=3\end{cases}}\)

Với x = 8 thì (*) thỏa mãn \(\Rightarrow x=3\)là 1 nghiệm của bất phương trình.

\(\left(^∗\right)\Leftrightarrow\sqrt{\left(x-5\right)\left(x-3\right)}+\sqrt{\left(x+5\right)\left(x-3\right)}\le\sqrt{\left(x-3\right)\left(4x-6\right)}\)(1)

Với \(x\ge5\Rightarrow x-3\ge2>0\)hay \(x-3>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}\le\sqrt{4x-6}\)\(\Leftrightarrow2x+2\sqrt{x^2-25}\le4x-6\)

\(\Leftrightarrow\sqrt{x^2-25}\le x-3\Leftrightarrow x^2-25=x^2-6x+9\Leftrightarrow x\le\frac{17}{3}\)

\(\Rightarrow5\le x\le\frac{17}{3}\)

Với \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x\ge8>0\)hay \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{\left(5-x\right)\left(3-x\right)}+\sqrt{\left(-5-x\right)\left(3-x\right)}\)

\(\le\sqrt{\left(3-x\right)\left(4-6x\right)}\)

\(\Leftrightarrow\sqrt{5-x}+\sqrt{-x-5}\le\sqrt{6-4x}\)

\(\Leftrightarrow-2x+2\sqrt{\left(5-x\right)\left(-x-5\right)}\le6-4x\)

\(\Leftrightarrow\sqrt{x^2-25}\le3-x\Leftrightarrow x^2-25\le x^2-6x+9\)

\(\Leftrightarrow x\le\frac{17}{3}\Rightarrow x\le-5\)

Từ đó suy ra tập nghiệm của bpt là \(x\in(-\infty;-5]\mu\left\{3\right\}\mu\left[5;\frac{17}{3}\right]\)

2 tháng 2 2020

\(\hept{\begin{cases}2y=2x^2-3x\left(1\right)\\x^2+y^2-2x-y=0\left(2\right)\end{cases}}\)

Từ PT (1) suy ra \(y=\frac{2x^2-3x}{2}\), thay vào phương trình (2), ta được:

\(x^2+\frac{\left(2x^2-3x\right)^2}{4}-2x-\frac{2x^2-3x}{2}=0\)

\(\Leftrightarrow\frac{4x^4-12x^3+9x^2-2x}{4}=0\)\(\Leftrightarrow4x^4-12x^3+9x^2-2x=0\)\(\Leftrightarrow x\in\left\{2;\frac{1}{2};0\right\}\)

Từ đây tự tìm nốt nhé

1 tháng 2 2020

\(3x^6-9x^3-x^3+3=\)\(0\)

\(\Leftrightarrow3x^3\left(x^3-3\right)-\left(x^3-3\right)=0\)

\(\Leftrightarrow\left(x^3-3\right)\left(3x^3-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3=3\\x^3=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt[3]{3}\\x=1\end{cases}}\)

vậy

1 tháng 2 2020

\(3x^6-10x^3+3=0\Leftrightarrow3x^6-9x^3-x^3+3=0\Leftrightarrow\left(3x^3-1\right)\left(x^3-3\right)=0\Leftrightarrow\hept{\begin{cases}x=\sqrt[3]{3}\\x=\sqrt[3]{\frac{1}{3}}\end{cases}}\)

31 tháng 1 2020

\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)

Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)

\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0

31 tháng 1 2020

Bạn tham khảo nhé!

Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath

31 tháng 1 2020

Ta có: \(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2+\left(y-1\right)^2}+\sqrt{\left(4-x\right)^2+\left(7-y\right)^2}=6\sqrt{2}\left(^∗\right)\)

Xét hai vectơ \(\overrightarrow{u}=\left(x+2;y-1\right)\)và \(\overrightarrow{v}=\left(4-x;7-y\right)\)

Ta có: \(\overrightarrow{u}+\overrightarrow{v}=\left(6;6\right)\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}\right|=\sqrt{6^2+6^2}=6\sqrt{2}\)

Do vậy \(\left(^∗\right)\)trở thành\(\overrightarrow{u}+\overrightarrow{v}=\left|\overrightarrow{u}+\overrightarrow{v}\right|\)

Điều này xảy ra khi và chỉ khi \(\overrightarrow{u}\)và \(\overrightarrow{v}\)cùng hướng

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(7-y\right)=\left(y-1\right)\left(4-x\right)\\\left(x+2\right)\left(4-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x+3\\-2\le x\le4\end{cases}}\)

Khi y = x + 3 thì \(x^2+y^2-2x+2y+2=2x^2+6x+17\)

Xét hàm số \(f\left(x\right)=2x^2+6x+17\)trên đoạn \(\left[-2;4\right]\)

Ta có: \(-\frac{6}{2.2}=\frac{-3}{2}\in\left[-2;4\right]\)và \(f\left(-2\right)=13;f\left(-\frac{3}{2}\right)=\frac{25}{2};f\left(4\right)=73\)

Suy ra \(|^{min}_{\left[-2;4\right]}f\left(x\right)=\frac{25}{2}\);\(|^{max}_{\left[-2;4\right]}f\left(x\right)=73\)

Do đó \(m=\frac{25}{2};M=73\)và \(n+M=\frac{171}{2}\)

Vậy \(n+M=\frac{171}{2}\)