K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

sao bn ko ra sớm hơn nhỉ

thầy toán mới ra bài này làm bài khó cuối cùng cho lớp mik

29 tháng 1 2019

Đặt phương trình trên là (1)

Ta thấy 120 và 18y đều chia hết cho 6. Nên \(11x⋮6\Leftrightarrow x⋮6\) (vì 11 và 6 là hai số nguyên tố cùng nhau)

Đặt \(x=6t\left(t\inℤ\right)\).Thay vào phương trình (1) được:

\(11.6t+6.3y=120\Leftrightarrow11t+3y=\frac{120}{6}=20\)

Suy ra \(3y=20-11t\Leftrightarrow y=\frac{20-11t}{3}\)

Vậy \(\hept{\begin{cases}x=6t\\y=\frac{20-11t}{3}\end{cases}}\) (t nguyên, sao cho \(20-11t⋮3\))

28 tháng 1 2019

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Leftrightarrow2\ge\frac{2}{\sqrt{ab}}\)

\(\Leftrightarrow1\ge\frac{1}{\sqrt{ab}}\)

\(\Leftrightarrow1\le\sqrt{ab}\)

\(\Leftrightarrow1\le ab\)

Dấu " = " xảy ra <=> a=b=1

\(P=a^3+b^3+a\left(b^2-6\right)+b\left(a^2-6\right)\)

\(\Leftrightarrow P=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\left(a+b\right)-6\left(a+b\right)\)

\(\Leftrightarrow P=\left(a+b\right)\left(a^2-ab+b^2+ab-6\right)\)

\(\Leftrightarrow P=\left(a+b\right)\left(a^2+b^2-6\right)\)

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

Dấu " = " xảy ra <=> a=b

Ta có: \(\frac{1}{a}+\frac{1}{b}=2\Leftrightarrow\frac{a+b}{ab}=2\Leftrightarrow a+b=2ab\)

Áp dụng:

\(P\ge2ab\left(2ab-6\right)\ge2.1\left(2-6\right)=2.\left(-4\right)=-8\)

Dấu " = " xảy ra <=> a=b=1

Vậy \(P_{min}=-8\Leftrightarrow a=b=1\) 

Tham khảo nhé~

28 tháng 1 2019

\(\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}+b\right)-\left(a+b\right)\)

\(\ge2+2-\left(a+b\right)=4-\left(a+b\right)\)

Từ đây,ta có: \(2\ge4-\left(a+b\right)\Leftrightarrow a+b\ge2\)

(Biến đổi tương tự như kudo,ta sẽ được:)

\(P=\left(a+b\right)\left(a^2+b^2-6\right)\ge2\left(a^2+b^2-6\right)\)

\(=2a^2+2b^2-12=\left(1+1\right)\left(a^2+b^2\right)-12\)

Áp dụng BĐT Bunhiacopxki: \(P\ge\left(1+1\right)\left(a^2+b^2\right)-12\ge\left(a+b\right)^2-12\ge4-12=-8\)

Vậy ...

30 tháng 1 2019

Sửa lại đề là tìm Max nhé m.n

Ta có:

\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{\left(b+3\right)\left(c+3\right)+\left(c+3\right)\left(a+3\right)+\left(a+3\right)\left(b+3\right)}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{5}{a+3}+\frac{5}{b+3}+\frac{5}{c+3}=3\Leftrightarrow\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

Xét biểu thức:

\(\frac{a^2-4}{a^2-9}=\frac{\left(a-2\right)\left(a+2\right)}{\left(a-3\right)\left(a+3\right)}=\frac{a-2}{a+3}.\frac{a+2}{a-3}\)

tưởng tự:

\(\frac{b^2-4}{b^2-9}=\frac{b-2}{b+3}.\frac{b+2}{b-3},\frac{c^2-4}{c^2-9}=\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}=\frac{a-2}{a+3}.\frac{a+2}{a-3}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

Do vai trò của a và b và c như nhau nên ta giả sử

\(a\ge b\ge c\)

Khi đó ta có:

\(\frac{a-2}{a+3}\ge\frac{b-2}{b+3}\ge\frac{c-2}{c+3},\frac{a+2}{a-3}\le\frac{b+2}{b-3}\le\frac{c+2}{c-3}\)

Áp dụng bất đẳng thức chebyshev cho 2 bộ ngược chiều trên ta có
\(\frac{a-2}{a+3}.\frac{a+3}{a-2}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\le\left(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}\right).\left(\frac{a+2}{a-3}+\frac{b+2}{b-3}+\frac{c+2}{c-3}\right)\)

Mà \(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}\le0\)

\(\Rightarrow\frac{5}{a^2-9}+\frac{5}{b^2-9}+\frac{5}{c^2-9}\le-3\Rightarrow\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\le\frac{-3}{5}\)

Dấu bằng xảy ra khi a=b=c=2

30 tháng 1 2019

Tìm max nha mấy god, e bị nhầm sory

28 tháng 1 2019

A B C D E I S O

1) Xét đường tròn (O) đường kính CD => ^CED = 900 => ^DEB = 900

Xét tứ giác ADEB có: ^BAD + ^ DEB = 900 + 900 = 1800 => Tứ giác ADEB nội tiếp 

Hay 4 điểm A,D,E,B cùng thuộc một đường tròn (đpcm).

2) Tứ giác ADEB nội tiếp => ^DEA = ^DBA. Tương tự: ^DEI = ^DCI

Ta có: Tứ giác ABCI nội tiếp của đường tròn đường kính BC (Do ^BAC = ^BIC = 900)

=> ^DBA = ^DCI. Từ đó, suy ra: ^DEA = ^DEI => ED là phân giác ^AEI (đpcm).

3) Dễ thấy DE, CI, BA là 3 đường cao của \(\Delta\)BCD nên AB,CI,DE đồng quy (tại trực tâm \(\Delta\)BCD) (đpcm).

4) Xét \(\Delta\)ABC có vuông tại A: \(\tan\widehat{ABC}=\frac{AC}{AB}=\sqrt{2}\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(theo gt)

Để EA là tiếp tuyến của (CD) thì ^AED = ^DCE. Hay ^ABD = ^ACB (Vì ^AED=^ABD)

<=> \(\Delta\)ADB ~ \(\Delta\)ABC (g,g) <=> \(AB^2=AD.AC\) <=> \(\left(\frac{AC}{\sqrt{2}}\right)^2=AD.AC\)

<=> \(AD=\frac{AC}{2}\)<=> D là trung điểm cạnh AC.

Vậy D là trung điểm AC thì EA là tiếp tuyến của (CD).

28 tháng 1 2019

Lưu ý: Không dùng BĐT Bunhiacopxki.

28 tháng 1 2019

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

Áp dụng

\(x^2+y^2\ge\frac{1}{2}.\left(x+y\right)^2=\frac{1}{2}.3^2=4,5\)

Dấu " = " xảy ra <=> x=y=1,5