phát biểu định lí, viết giả thiết và kết luận
được diễn tả bởi hình vẽ sau :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
a) Định lí: “Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia”.
b) Định lí được minh họa bởi hình vẽ sau:
![]() |
c vuông góc với a, a // b thì c vuông góc với b |
a) Ta có : \(\left|3x+4\right|=2\left|2x-9\right|\)
=> \(\orbr{\begin{cases}3x+4=2\left(-2x+9\right)\\3x+4=2\left(2x-9\right)\end{cases}}\Rightarrow\orbr{\begin{cases}3x+4=-4x+18\\3x+4=4x-18\end{cases}}\Rightarrow\orbr{\begin{cases}7x=14\\-x=-22\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)
=> \(x\in\left\{2;22\right\}\)
b) Ta có : \(\left|10x+7\right|< 37\)
=> -37 < 10x + 7 < 37
=> -44 < 10x < 30
=> -4,4 < x < 3
Vậy -4,4 < x < 3
c) |3 - 8x| \(\le\)19
=> \(-19\le3-8x\le19\)
=> \(\hept{\begin{cases}3-8x\ge-19\\3-8x\le19\end{cases}}\Rightarrow\hept{\begin{cases}22\ge8x\\-16\le8x\end{cases}}\Rightarrow\hept{\begin{cases}x\le\frac{11}{4}\\x\ge-2\end{cases}}\Rightarrow-2\le x\le\frac{11}{4}\)
d) Ta có |x + 3| - 2x = |x - 4| (1)
Nếu x < -3
=> |x + 3| = -(x + 3) = -x - 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> -x - 3 - 2x = - x + 4
=> -3x - 3 = - x + 4
=> -2x = 7
=> x = - 3,5 (tm)
Nếu \(-3\le x\le4\)
=> |x + 3| = x + 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> x + 3 - 2x = -x + 4
=> -x + 3 = -x + 4
=> 0x = 1 (loại)
Nếu x > 4
=> |x + 3| = x + 3
=> |x - 4| = x + 4
Khi đó (1) <=> x + 3 - 2x = x - 4
=> -x + 3 = x - 4
=> -2x = -7
=> x = 3,5 (loại)
Vậy x = -3,5
Bài làm:
Ta có: \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(1)
Và \(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\) (2)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{10}=\frac{-2x+y-z}{-6+5-10}=\frac{-22}{-11}=2\)
=> \(\hept{\begin{cases}x=6\\y=10\\z=20\end{cases}}\)
Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(*)
\(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\)(**)
Từ (*) ; (**) ta có : \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}=\frac{-2x+y-z}{-2.6+10-20}=-\frac{22}{-22}=1\)
: \(x=6;y=10;z=20\)
A B C D y 1 2 3 2 1
Vì \(\widehat{B}=\widehat{C}\Rightarrow\Delta ABC\text{ cân tại A }\Rightarrow AB=AC\)
Xét \(\Delta ABD\text{ và }\Delta ADC\) có :
\(\hept{\begin{cases}AB=AC\\\widehat{A_1}=\widehat{A_2}\\AD\text{ chung }\end{cases}\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)}\)
=> \(\widehat{D_1}=\widehat{D_2}\text{ mà }\widehat{D_1}+\widehat{D_2}=180^{\text{o}}\Rightarrow\widehat{D_1}=\widehat{D_2}=90^{\text{o}}\)
Mà Ay//BC
=> \(\widehat{A_{23}}+\widehat{D_2}=180^{\text{o}}\text{ mà }\widehat{D_2}=90^{\text{o}}\Rightarrow\widehat{A_{23}}=90^{\text{o}}\Rightarrow AD\perp Ay\left(\text{đpcm}\right)\)
Ta có : \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left|4-x\right|\ge0\forall x\\\left|x\right|\ge0\forall x\end{cases}\Rightarrow}\hept{\begin{cases}\left|x+3\right|=x+3\\\left|4-x\right|=4-x\\\left|x\right|=x\end{cases}}\)
\(\Rightarrow3\left|x-3\right|+2\left|4-x\right|+\left|x\right|\)
\(=3.\left(x-3\right)+2.\left(4-x\right)+x\)
\(=3x-9+8-2x+x\)
\(=\left(3x-2x+x\right)-\left(9-8\right)\)
\(=2x+1\)
- Phát biểu tính chất (định lí) của hai đường thẳng song song:
Nếu một đường thẳng cắt hai đường thẳng song song thì:
+) Hai góc so le trong bằng nhau
+) Hai góc đồng vị bằng nhau
+) Hai góc trong cùng phía bù nhau