Cho a,b,c >0 CMR: \(\frac{ab}{c}\)+ \(\frac{bc}{a}\) + \(\frac{ac}{b}\) > or bằng a + b + c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bÀI TẬP về NHÀ của bạn khó quá!!!!!!!! Chắc cô giáo bạn giải đc đó. HỎi cô luôn đi chứ còn ngại j nữa..
1,\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=\)
\(=10\left(a^2-2ab+b^2\right)+10\left(a^2+b^2\right)\)
\(\ge10\left(a-b\right)^2+5.\left(a+b\right)^2\ge0+5.20^2=2000\)
2,a,\(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)
\(\Leftrightarrow a-2\sqrt{a}+b-2\sqrt{b-1}+c-2\sqrt{c-2}=0\)
\(\Leftrightarrow a-2\sqrt{a}+1+b-1-2\sqrt{b-1}+1+c-2+2\sqrt{c-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-1\right)^2+\left(\sqrt{c-2}-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
b,sai đề
Xét \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow10\ge\sqrt{ab}\Leftrightarrow100\ge ab\)
\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=20\left[a^2+2ab+b^2-3ab\right]=20\left(20\right)^2-6ab\)
\(T\ge20.20^2-6.100=7400\)
Áp dụng BĐT Cauchy ta có :
\(\frac{a^3}{bc}+b+c\ge3\sqrt[3]{\frac{a^3bc}{bc}}=3a\)
\(< =>\frac{a^3}{bc}\ge3a-b-c\left(1\right)\)
Chứng minh tương tự => \(\hept{\begin{cases}\frac{b^3}{ca}\ge3b-a-c\left(2\right)\\\frac{c^3}{ab}\ge3c-a-b\left(3\right)\end{cases}}\)
(1),(2),(3) =>\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge3a-b-c+3b-a-c+3c-a-b=a+b+c\left(đpcm\right)\)
Dấu "=" xảy ra khi a=b=c
Bạn dùng phương pháp chọn điểm rơi thôi
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
\(x^2=\left(2m-1\right)x-2m+1\)
\(\Leftrightarrow x^2-\left(2m-1\right)x+2m-1=0\)(1)
Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt
Tức là \(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-1\right)>0\)
\(\Leftrightarrow\left(2m-1\right)\left(2m-5\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}m< \frac{1}{2}\\m>\frac{5}{2}\end{cases}}\)
Theo hệ thức Vi-ét có : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=2m-1\end{cases}}\)
Vì \(x_1< \frac{3}{2}< x_2\)
\(\Rightarrow\left(x_1-\frac{3}{2}\right)\left(x_2-\frac{3}{2}\right)< 0\)
\(\Leftrightarrow x_1x_2-\frac{3}{2}\left(x_1+x_2\right)+\frac{9}{4}< 0\)
\(\Leftrightarrow2m-1-\frac{3}{2}\left(2m-1\right)+\frac{9}{4}< 0\)
\(\Leftrightarrow2m-1-3m+\frac{3}{2}+\frac{9}{4}< 0\)
\(\Leftrightarrow-m< -\frac{11}{4}\)
\(\Leftrightarrow m>\frac{11}{4}\)
Lại có trào lưu đăng câu hỏi linh tinh đây :)))
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Tui có nhưng ko ngu mà cho og .OKE.................................
=1234567890+111+1+1+111111111111111111111111111111111+111111111111111111111111111111111111111+22222222222222222222222222222+222222
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
sử dụng bất đẳng thức côsi cho từng 2 phân số
sau đó cộng lại là ra
hok tốt nha bn
Áp dụng bất đẳng thức Cô-si ta có
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab^2c}{ac}}=2b\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{abc^2}{ab}}=2c\)
\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{a^2bc}{bc}}=2a\)
Cộng từng vế của 3 bất đẳng thức trên lại ta được
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Dấu "=" xảy ra <=> a = b = c