Cho đường tròn (O;R) điểm M nằm ngoài đường tròn sao cho OM=2R, qua M kẻ 2 tiếp tuyến MA và MA(A,B là tiếp điểm).Tính ^AOB và ^AMB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
Đổi: 54 phút = 0,9 giờ
Gọi vận tốc của xe máy là x(km/h); điều kiện: x > 0
Quãng đường xe ô tô đi từ B đến C là:
BC = AB - AC = 180 - 80 = 100(km)
Vì trong cùng 1 thời gian ô tô đi được 100 km, xe máy đi được 80 km nên Vô tô 1,25 Vxe máy
Vận tốc ô tô / Vận tốc xe máy = \(\frac{100t}{80t}=\frac{100}{80}=1,25\)
Thời gian xe máy đi từ A đến D là : \(t=\frac{s}{v}=\frac{60}{x}(h)\)
Thời gian xe ô tô đi từ B đến D là: \(t=\frac{s}{v}=\frac{180-60}{1,25x}=\frac{120}{1,25x}(h)\)
Làm nốt
Ta sẽ dùng phản chứng
Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))
Giả sử không có bất kì 2 cạnh nào bằng nhau
Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)
Theo bất đẳng thức trong tứ giác thì dễ thấy \(x;y;z>1\)
Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)
Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z
Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)
tương tự : \(z\ge4\)
Từ điều giả sử\(\Rightarrow\) \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)
Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)
\(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)
Nên điều giả sử là sai
Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó
AP DUNG BDT CAUCHY-SCHWAR : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))
...Cauchy-Schwarz:
\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)
Giải tiếp t cái dấu = :v
GOI CR : a
CD : b
\(\hept{\begin{cases}\left(a-2\right)\left(b+5\right)=ab\\\left(a+2\right)\left(b-3\right)=ab\end{cases}}\)
c
Theo hệ thức lượng trong tam giác vuông ta có:
Cần chứng minh:
Mà . Cần cm:
Mà (g.g) nên ta có đpcm
Qua điểm nằm ngoài đường tròn $(O)$, vẽ tiếp tuyến $CD$ với đường tròn $(O)$ ( $D$ là tiếp điểm). Đường thẳng $CO$ cắt đường tròn tại hai điểm $A&# - Hình học - Diễn đàn Toán học
Do MA là tiếp tuyến của (O) => MA \(\perp\)AO
Có \(cosO_1=\frac{OA}{OM}=\frac{R}{2R}=\frac{1}{2}\)
\(\Rightarrow\widehat{O_1}=60^o\)
Tương tự \(\widehat{O_2}=60^o\)
\(\Rightarrow\widehat{AOB}=\widehat{O_1}+\widehat{O_2}=60^o+60^o=120^o\)
Có: \(\widehat{AOB}+\widehat{OBM}+\widehat{BMA}+\widehat{MAO}=360^o\)
\(\Leftrightarrow120^o+90^o+\widehat{BMA}+90^o=360^o\)
\(\Leftrightarrow\widehat{BMA}=60^o\)
Vậy ...