K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

O M A B 1 2 1 2

Do MA là tiếp tuyến của (O) => MA \(\perp\)AO

Có \(cosO_1=\frac{OA}{OM}=\frac{R}{2R}=\frac{1}{2}\)

\(\Rightarrow\widehat{O_1}=60^o\)

Tương tự \(\widehat{O_2}=60^o\)

\(\Rightarrow\widehat{AOB}=\widehat{O_1}+\widehat{O_2}=60^o+60^o=120^o\)

Có: \(\widehat{AOB}+\widehat{OBM}+\widehat{BMA}+\widehat{MAO}=360^o\)

\(\Leftrightarrow120^o+90^o+\widehat{BMA}+90^o=360^o\)

\(\Leftrightarrow\widehat{BMA}=60^o\)

Vậy ...

3 tháng 2 2019

A B C D M N O I K P Q H S R L T E G

1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp

Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn  => ^BND = ^BOD = ^COD = ^CND

Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).

2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA

Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)

=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB

Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)

Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)

Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR

Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales:  \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)

Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).

3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.

Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp

Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900 

Mặt khác: ^DTE = 180- ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE

Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.

Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định

=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).

3 tháng 2 2019

Đổi: 54 phút = 0,9 giờ

Gọi vận tốc của xe máy là x(km/h); điều kiện: x > 0

Quãng đường xe ô tô đi từ B đến C là:

BC = AB - AC = 180 - 80 = 100(km)

Vì trong cùng 1 thời gian ô tô đi được 100 km, xe máy đi được 80 km nên Vô tô 1,25 Vxe máy 

Vận tốc ô tô / Vận tốc xe máy = \(\frac{100t}{80t}=\frac{100}{80}=1,25\)

Thời gian xe máy đi từ A đến D là : \(t=\frac{s}{v}=\frac{60}{x}(h)\)

Thời gian xe ô tô đi từ B đến D là: \(t=\frac{s}{v}=\frac{180-60}{1,25x}=\frac{120}{1,25x}(h)\)

Làm nốt 

4 tháng 2 2019

Ta sẽ dùng phản chứng 

Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))

Giả sử không có bất kì 2 cạnh nào bằng nhau

Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)

Theo bất đẳng thức trong tứ giác  thì dễ thấy \(x;y;z>1\)

Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)

Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z

Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)

tương tự : \(z\ge4\)

Từ điều giả sử\(\Rightarrow\)  \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)

Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)

                               \(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)

Nên điều giả sử là sai 

Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó

3 tháng 2 2019

AP DUNG BDT CAUCHY-SCHWAR :  \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))

3 tháng 2 2019

...Cauchy-Schwarz: 

\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)

Giải tiếp t cái dấu = :v

3 tháng 2 2019

GOI CR : a

       CD : b

\(\hept{\begin{cases}\left(a-2\right)\left(b+5\right)=ab\\\left(a+2\right)\left(b-3\right)=ab\end{cases}}\)

3 tháng 2 2019

cảm tạ ạ

cΔCDAαΔCBD⇒CDBC=ADBD=ACCD⇒ACBC=CD2BC2

Theo hệ thức lượng trong tam giác vuông ta có: AHBH=HD2HB2

Cần chứng minh: CD2BC2=HD2HB2⇔CDBC=HDHB

Mà CDBC=ADBD. Cần cm: ADBD=HDHB

Mà ΔADBαΔHDB(g.g) nên ta có đpcm

Qua điểm nằm ngoài đường tròn $(O)$, vẽ tiếp tuyến $CD$ với đường tròn $(O)$ ( $D$ là tiếp điểm). Đường thẳng $CO$ cắt đường tròn tại hai điểm $A&# - Hình học - Diễn đàn Toán học

11 tháng 2 2019

AI GIẢI CHI TIẾT DÙM MK CÁI