chứng minh rằng
căn bậc 3 của( 2+ căn 5) + căn bâc 3 của (2-căn 5) =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Lấy I là trung điểm của cạnh BC
Xét \(\Delta FBC\)vuông tại F có FI là đường trung tuyến ứng với cạnh huyền nên FI=BI=CI(1)
Xét \(\Delta EBC\)vuông tại E có EI là đường trung tuyến ứng với cạnh huyền nên EI=IB=IC (2)
Từ 1 và 2 suy ra EI=FI=IB=IC
suy ra E,F,B,C cùng thuộc 1 đường tròn tâm I
b, Xét \(\Delta AFC\)và \(\Delta AEB\)
có \(\hept{\begin{cases}\widehat{AFC}=\widehat{BEA}\left(=90^o\right)\\\widehat{A}\left(chung\right)\end{cases}}\)
\(\Rightarrow\Delta AFC\)đồng dạng với \(\Delta AEB\)(g.g)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)\(\Rightarrow AE.AC=AF.AB\)\(\RightarrowĐPCM\)
Chứng minh: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) (1)
Có: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(VT=\frac{x}{x}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+\frac{z}{z}\)
\(=\left(\frac{x}{x}+\frac{y}{y}+\frac{z}{z}\right)+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)
\(\ge3+2+2+2=9=VP\) (dễ dàng CM được \(\frac{x}{y}+\frac{y}{x}\ge2\) và cũng tương tự còn lại)
Áp dụng (1) vào bài toán: \(\frac{1}{b}+\frac{1}{b}+\frac{1}{a}\ge\frac{9}{b+b+a}=\frac{9}{2b+a}\)
\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+c+c}=\frac{9}{b+2c}\)
\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+a+a}=\frac{9}{c+2a}\)
Cộng vế theo vế ta được: \(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
=> ĐPCM
P/s: ko chắc ạ, sai sót xin bỏ qua -.-