K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Bạn muốn nhận giày và balo miễn phí cho năm học mới? --->Tham gia ngay Minigame NHANH NHƯ CHỚP số thứ 7 ngày 16/02/2019 tại đây: https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b Cơ hội rất hiếm! Hôm qua bạn Thiên An vừa nhận được 1 balo trị giá 350k đấy! Xem chi tiết :https://alfazi.edu.vn/question/5c6818c4641b064a18a2575b

ALFAZI THƯƠNG HIỆU HỌC TẬP SỐ 1 VN!

18 tháng 2 2019

A B C K M N I

a) Ta thấy: Các góc ^AMB, ^ANC nội tiếp chắn nửa đường tròn => ^AMB = ^ANC = 900

=> BM và CN cùng vuông góc MN => BM // CN

Xét tứ giác BMNC: BM // CN, ^BMN = ^CNM = 900 => Tứ giác BMNC là hình thang vuông.

b) Gọi AK là trung tuyến từ đỉnh A của \(\Delta\)ABC. Dễ thấy IK là đường trung bình hình thang BMNC

=> IK // BM // CN. Mà BM,CN vuông góc MN nên IK vuông góc MN tại I => ^AIK = 900 

=> I nằm trên đường tròn đường kính AK . Do AK cố định nên (AK) cố định

=> I chạy trên đường tròn (AK). Kết luận: ...

16 tháng 2 2019

https://h.vn/hoi-dap/tim-kiem?q=m%E1%BB%99t+t%E1%BB%95+c%C3%B4ng+nh%C3%A2n+theo+k%E1%BA%BF+ho%E1%BA%A1ch+ph%E1%BA%A3i+l%C3%A0m+120+s%E1%BA%A3n+ph%E1%BA%A9m+trong+m%E1%BB%99t+th%E1%BB%9Di+gian+nh%E1%BA%A5t+%C4%91%E1%BB%8Bnh+nh%C6%B0ng+khi+th%E1%BB%B1c+hi%E1%BB%87n+n%C4%83ng+su%E1%BA%A5t+c%E1%BB%A7a+t%E1%BB%95+%C4%91%C3%A3+v%C6%B0%E1%BB%A3t+n%C4%83ng+su%E1%BA%A5t+d%E1%BB%B1+%C4%91%E1%BB%8Bnh+l%C3%A0+10+s%E1%BA%A3n+ph%E1%BA%A9m+.+do+%C4%91%C3%B3+t%E1%BB%95+%C4%91%C3%A3+ho%C3%A0n+th%C3%A0nh+c%C3%B4ng+vi%E1%BB%87c+s%E1%BB%9Bm+h%C6%A1n+d%E1%BB%B1+%C4%91%E1%BB%8Bnh+m%E1%BB%99t+ng%C3%A0y+t%C3%ADnh+xem+th%E1%BB%B1c+t%E1%BA%BF+m%E1%BB%97i+ng%C3%A0y+t%E1%BB%95+%C4%91%C3%A3+l%C3%A0m+%C4%91%C6%B0%E1%BB%A3c+bao+nhi%C3%AAu+s%E1%BA%A3n+ph%E1%BA%A9m&id=230647

16 tháng 2 2019

Câu này sai đề bài rồi.

28 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(A=\left(\frac{3\sqrt{x}+6}{x-4}+\frac{\sqrt{x}}{\sqrt{x}-2}\right):\frac{x-9}{\sqrt{x}-3}\)

\(\Leftrightarrow A=\left(\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}-2}\right):\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow A=\frac{3+\sqrt{x}}{\sqrt{x}-2}\cdot\frac{1}{\sqrt{x}+3}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}-2}\)

b) Sửa P thành A nha :b

Để \(A=\frac{-1}{3}\)

\(\Leftrightarrow\frac{1}{\sqrt{x}-2}=-\frac{1}{3}\)

\(\Leftrightarrow2-\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=-1\)(ktm)

Vậy để \(A=-\frac{1}{3}\Leftrightarrow x\in\varnothing\)

Có lẽ là đề nhầm (Đề này trong tuyển tập "Bộ đề hính học lớp 9). Đúng ra phải là BE cắt AC tại M

16 tháng 2 2019

\(1,\hept{\begin{cases}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}\left(ĐKXĐ:x\ne0\right)}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{3}{x}-1\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}}\)

\(\Rightarrow\left(\frac{3}{x}-1\right)^2-\frac{5}{x^2}=-1\)

Đặt \(\frac{1}{x}=a\left(a\ne0\right)\)

\(\Rightarrow\left(3a-1\right)^2-5a^2=-1\)

\(\Leftrightarrow9a^2-6a+1-5a^2+1=0\)

\(\Leftrightarrow4a^2-6a+2=0\)

Làm nốt

2, ĐKXĐ \(x\ge1,y\ge0\)

 \(\hept{\begin{cases}xy+x+y=x^2-2y^2\left(1\right)\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\left(2\right)\end{cases}}\)  

Pt (1) <=> \(xy+x+y+y^2=x^2-y^2\) 

<=> \(y\left(x+y\right)+x+y=\left(x-y\right)\left(x+y\right)\) 

<=> \(\left(x+y\right)\left(y+1\right)=\left(x-y\right)\left(x+y\right)\) 

<=> \(\left(x+y\right)\left(2y+1-x\right)=0\) 

Mà \(x\ge1,y\ge0\) => \(x+y>0\) => \(2y+1-x=0\)<=>  \(x=2y+1\) 

Thay x=2y+1 vào (2) 

Đoạn này bn tự giải tiếp nhé 

22 tháng 4 2020

\(P=\frac{5a+5b+2c}{\sqrt{12\left(a^2+11\right)}+\sqrt{12\left(b^2+11\right)}+\sqrt{c^2+11}}\)

\(=\frac{5a+5b+2c}{2\sqrt{3\left(a+b\right)\left(a+c\right)}+2\sqrt{3\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}}\)(Gọi A là mẫu của phân thức) (*)

Áp dụng bất đẳng thức Cô - si cho hai số không âm, ta có:

\(2\sqrt{3\left(a+b\right)\left(a+c\right)}\le3\left(a+b\right)+\left(a+c\right)=4a+3b+c\)(1)

Tương tự ta có: \(2\sqrt{3\left(b+a\right)\left(b+c\right)}\le4b+3a+c\)(2)

\(\sqrt{\left(c+a\right)\left(c+b\right)}\le\frac{1}{2}\left(a+b+2c\right)\)(3)

Cộng từng vế của (1); (2); (3), ta có:

\(A\le\frac{15}{2}a+\frac{15}{2}b+3c\)(**)

Từ (*) và (**) suy ra \(P\ge\frac{5c+5b+2c}{\frac{15}{2}a+\frac{15}{2}b+3c}=\frac{2}{3}\)

Đẳng thức xảy ra khi a = b = 1; c = 5

22 tháng 4 2020

Dễ thấy \(a^2+11=a^2+ab+cb+ca=\left(a+b\right)\left(a+c\right)\)do đó ta đc

\(\sqrt{12\left(a^2+11\right)}=2\sqrt{3\left(a+b\right)\left(a+c\right)}\le3\left(a+b\right)\left(a+c\right)=4a+3b+c\)

tương tự nha

\(\sqrt{12\left(b^2+11\right)}=2\sqrt{3\left(a+b\right)\left(b+c\right)}\le3\left(a+b\right)\left(b+c\right)=3a+4b+c\)

\(\sqrt{c^2+11}=\sqrt{\left(c+a\right)\left(b+c\right)}\le\frac{c+a+b+c}{2}=\frac{a+b+2c}{2}\)

khi đó ta đc

\(\sqrt{12\left(a^2+11\right)}+\sqrt{12\left(b^2+11\right)}+\sqrt{c^2+11}\le\frac{15a}{2}+\frac{15b}{2}+3c\)

suy ra \(P\ge\frac{5a+5b+2c}{\frac{15a}{2}+\frac{15b}{2}+3c}=\frac{10a+10b+4c}{15a+15b+6c}=\frac{2}{3}\)

zậy GTNN của P=2/3 

dấu = xảy ra khi \(\hept{\begin{cases}2a+3b=3a+2b=c\\ab+bc+ac=11\end{cases}=>a=b=1,c=5}\)

cách của bạn kia cx đc nha , cậu có thể tham khảo cách mình

17 tháng 2 2019

\(\hept{\begin{cases}y=2\sqrt{x-1}\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)  (ĐKXĐ: \(x\ge1;x\ge-y;\left(x;y\right)\in R\))

Thế (1) vào (2) ta được phương trình: \(\sqrt{x+2\sqrt{x-1}}=x^2-2\sqrt{x-1}\)

\(\sqrt{x-1+2\sqrt{x-1}+1}=x^2-2\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=x^2-2\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-1}+1=x^2-2\sqrt{x-1}\) (Do \(\sqrt{x-1}+1>0\))

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-3\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}\left(x+1\right)-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\\sqrt{x-1}\left(x+1\right)=3\left(3\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow x^3+x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+3x+5=0\left(vn\right)\end{cases}\Leftrightarrow}x=2\). Từ (1) suy ra: \(y=2\)

Vậy hệ PT cho có nghiệm duy nhất (x;y)=(2;2)

17 tháng 2 2019

Bổ sung: Với x=1, từ (1) suy ra y=0 => (x;y)=(1;0)

27 tháng 2 2019

Đặt \(a=\sqrt{2+\sqrt{x}};b=\sqrt{2-\sqrt{x}}\left(a,b\ge0\right)\Rightarrow a^2+b^2=4\)

Khi đó, ta thu được pt sau: \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)

\(\Leftrightarrow\frac{\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)}{\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)}=\sqrt{2}\)

\(\Rightarrow4\sqrt{2}-ab\left(a-b\right)=\sqrt{2}\left(2+a\sqrt{2}-b\sqrt{2}-ab\right)\) (Vì a2+b2=4)

\(\Leftrightarrow2\sqrt{2}-ab\left(a-b\right)-2\left(a-b\right)+ab\sqrt{2}=0\)

\(\Leftrightarrow\sqrt{2}\left(ab+2\right)-\left(a-b\right)\left(ab+2\right)=0\)

\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}ab+2=0\\b+\sqrt{2}=a\end{cases}}\)(loại \(ab+2=0\) vì \(ab\ge0\))

\(\Leftrightarrow b+\sqrt{2}=a\Rightarrow\sqrt{2-\sqrt{x}}+\sqrt{2}=\sqrt{2+\sqrt{x}}\)

\(\Leftrightarrow2-\sqrt{x}+2+2\sqrt{4-2\sqrt{x}}=2+\sqrt{x}\)

\(\Leftrightarrow2-2\sqrt{x}+2\sqrt{4-2\sqrt{x}}=0\Leftrightarrow\sqrt{4-2\sqrt{x}}=\sqrt{x}-1\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1\ge0\\4-2\sqrt{x}=x-2\sqrt{x}+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=3\left(tm\right)\end{cases}}\)

Vậy pt cho có nghiệm duy nhất x=3.