\(\hept{\begin{cases}x\left(2\sqrt{y-1}-x\right)+y\left(2\sqrt{x-1}-y\right)=0\\x^3+y^3=16\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tứ giác ACMD có:
góc DAC + góc DMC=180 độ( do DAC=90 độ, CMD =90 độ)
vậy ACMD là tứ giác nt
xét tứ giác BCME có:
góc CBE+ góc CME= 180 độ( vì góc CBE= 90 độ, góc CME =90 độ)
vậy tứ giác BCME là tg nt
a: Xét tứ giác CEHD có góc CEH+góc CDH=180 độ
nên CEHD là tứ giác nội tiếp
b: Xét tứ giác AEDB có góc AEB=góc ADB=90 độ
nên AEDB là tứ giác nội tiếp
\(\hept{\begin{cases}\sqrt{3}x-y=1\\5x+\sqrt{2}y=\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-\sqrt{2}y=\sqrt{2}\\5x+\sqrt{2}y=\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{6}+5\right)x=\sqrt{2}+\sqrt{3}\\\sqrt{3}x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{6}+5}\\\frac{\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{6}+5}-1=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{6}+5}\\y=\frac{-2}{\sqrt{6}+5}\end{cases}}\)
Vậy: Hệ có nghiệm duy nhất thỏa mãn : \(\left(x;y\right)=\left(\frac{\sqrt{2}+\sqrt{3}}{\sqrt{6}+5};\frac{-2}{\sqrt{6}+5}\right)\)
=.= hk tốt!!