K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

\(\sqrt{x+2}+x^3=y^3+\sqrt{y+2}\)

nếu x>y =>vt>vp

nếu x<y => vt<vp

nếu x=y => VT=VP

=> x=y

ta có\(M=-x^2+2x+2015=-\left(x-1\right)^2+2016\)

=>M max=2016<=>x=y=1

7 tháng 3 2019

a) 32 < 2^n < 128
<=>2^5 < 2^n <2^7
<=>5<n<7
Vậy n=6

7 tháng 3 2019

a) khi m=3

\(\left(1\right):y^2-2\left(3-1\right).y-\left(3+2\right)=0\)

\(\Leftrightarrow y^2-4y-5=0\)

\(\Leftrightarrow y^2-4y+4-9=0\)

\(\Leftrightarrow\left(y-2\right)^2=9=3^2\)

\(\Leftrightarrow\orbr{\begin{cases}y-2=3\\y-2=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-1\end{cases}}\)

b)

\(y^2-2\left(m-1\right)y-\left(m+2\right)=0\)

\(\Delta=\left[-2\left(m-1\right)\right]^2-4.1.\left[-\left(m+2\right)\right]\)

   \(=4\left(m^2-2m+1\right)+4.\left(m+2\right)\)

   \(=4m^2-8m+4+4m+8\)

   \(=4m^2-4m+12\)

\(=4m^2-4m+1+11\)

\(=\left(2m-1\right)^2+11\ge11>0\)

=> pt luôn có hai nghiệm phân biệt

8 tháng 3 2019

\(\hept{\begin{cases}2x+3y=4\\3x-4y=23\end{cases}\Leftrightarrow\hept{\begin{cases}6x+9y=12\\6x-8y=46\end{cases}\Leftrightarrow}\hept{\begin{cases}17y=-34\\2x+3y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-2\\x=5\end{cases}}}\)