K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

Trục căn thức thôi bạn

\(B=\frac{1}{\sqrt{5}-2}+\frac{4}{3+\sqrt{5}}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\frac{4\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\frac{\sqrt{5}+2}{5-4}+\frac{4\left(3-\sqrt{5}\right)}{9-5}\)

\(=\frac{\sqrt{5}+2}{1}+\frac{4\left(3-\sqrt{5}\right)}{4}\)

\(=\sqrt{5}+2+3-\sqrt{5}=5\)

15 tháng 12 2020

Tương tự mấy phần kia 

\(A=\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\)

\(=\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}=\frac{-3+x}{\left(x-2\right)\left(x-3\right)}=\frac{-1}{x-2}\)

NM
16 tháng 12 2020

mình hoàn thiện nốt bài bạn ở trên nhé

Do \(x^2+xu+u^2\)là một bình phương thiếu nên \(x^2+xu+u^2\ge0\Rightarrow x^2+xu+u^2+2\ge2>0\text{​​}\)

vậy hệ phương trình ban đầu \(\Leftrightarrow x=u\) hay \(x=\sqrt[3]{2x+1}\Leftrightarrow x^3=2x+1\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)vậy pt có ba nghiệm 

16 tháng 12 2020

Dat u=\(\sqrt[3]{2x-1}\)

ta co he \(\hept{\begin{cases}x^3+1=2u\\u^3+1=2x\end{cases}^{ }}\)(he nay doi xung )

tru ve vs ve ta co:

\(x^3-u^3=2\left(u-x\right)\)

\(\Leftrightarrow\left(x-u\right)\left(x^2+xu+u^2+2\right)=o\)

phan sau tu giai nha muon roi minh buon ngu 

15 tháng 12 2020

\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{4x-x^2}{4-x^2}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{4x-x^2}{\left(2-x\right)\left(x+2\right)}\)

\(=\frac{x+2-x+2-4x+x^2}{\left(x+2\right)\left(x-2\right)}=\frac{-4x+4+x^2}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x-2}{x+2}\)

15 tháng 12 2020

\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{4x-x^2}{4-x^2}\)

\(=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2-4x}{x^2-4}\)

\(=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2-4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2-4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2-x+2+x^2-4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

15 tháng 12 2020

\(\frac{2x^2-1}{x^2-xy}+\frac{1-2y^2}{x^2-xy}=\frac{2x^2-1+1-2y^2}{x^2-xy}\)

\(=\frac{2x^2-2y^2}{x^2-xy}=\frac{2\left(x^2-y^2\right)}{x\left(x-y\right)}\)

\(=\frac{2\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)}=\frac{2\left(x+y\right)}{x}\)

15 tháng 12 2020

Sửa đề : \(\frac{2x^2-1}{x^2-xy}+\frac{1-2y^2}{x^2-xy}\)

\(=\frac{2x^2-1+1-2y^2}{x^2-xy}=\frac{2x^2-2y^2}{x\left(x-y\right)}=\frac{2\left(x^2-y^2\right)}{x\left(x-y\right)}\)

\(=\frac{2\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)}=\frac{2\left(x+y\right)}{x}\)

15 tháng 12 2020

a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)

b, \(x^3+x^2-9x-9=0\Leftrightarrow x^2\left(x+1\right)-9\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-9\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=-1;\pm3\)

c, \(x^2-3x-10=0\Leftrightarrow x^2+2x-5x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=5;-2\)

15 tháng 12 2020

a, \(20x^2y^3-15xy^2=5xy^2\left(4xy-3\right)\)

b, \(3x+3y-x^2-xy=3\left(x+y\right)-x\left(x+y\right)=\left(3-x\right)\left(x+y\right)\)

c, \(9-x^2-y^2+2xy=9-\left(x^2+y^2-2xy\right)\)

\(=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)

15 tháng 12 2020

20x2y3 - 15xy2 = 5xy2( 4xy - 3 )

3x + 3y - x2 - xy = ( 3x + 3y ) - ( x2 + xy ) = 3( x + y ) - x( x + y ) = ( x + y )( 3 - x )

9 - x2 - y2 + 2xy = 9 - ( x2 - 2xy + y2 ) = 32 - ( x - y )2 = ( 3 - x + y )( 3 + x - y )