K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

xem lại đề

12 tháng 3 2019

Đố tớ hả ? =( Buồn ghê =( 

Áp dụng Cô-si cho high số được

\(\left(1+a^2+2bc\right)+4\ge2\sqrt{4\left(1+a^2+2bc\right)}\)

\(\Rightarrow\sqrt{1+a^2+2bc}\le\frac{a^2+2bc+5}{4}\)

C/m tương tự rồi cộng lại đc

\(P\le\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)+15}{4}\)

       \(=\frac{\left(a+b+c\right)^2+15}{4}=\frac{3^2+15}{4}=6\)

Dấu "=" khi a = b = c = 1

P/S: thôi ko muốn đấu với a lớp 9 đâu -.-

12 tháng 3 2019

Bài khó vậy T_T thế này làm sao nổi ?

12 tháng 3 2019

Gọi chiều dài và chiều rộng lần lượt là a,b (a>b>0)

Theo đề bài:

+Chiều dài hơn chiều rộng 7cm =>> a-b=7

+Độ dài đường chéo là 13cm =>> a^2+b^2=169

Giải hpt => a,b

15 tháng 3 2020

Xem chi tiết tại đây: https://www.facebook.com/%C3%94n-thi-v%C3%A0o-l%E1%BB%9Bp-10-108156447351664/

12 tháng 3 2019

\(x\left(5x^2+9x-14\right)=0\)

\(x\left(5x^2+14x-5x-14\right)=0\)

\(x\left(\left(5x^2-5x\right)+\left(14x-14\right)\right)=0\)

\(x\left(5x\left(x-1\right)+\left(14\left(x-1\right)\right)\right)=0\)

\(x\left(x-1\right)\left(5x-14\right)=0\)

từ đó suy ra x=0 hoặc x-1=0 hoặc 5x-14=0(tự làm nốt nha)

12 tháng 3 2019

ai giúp vớ cần gấp

12 tháng 3 2019

ĐK: \(\frac{2}{3}\le x\le\frac{3}{2}\)

(Vế phải và vế trái đều không âm nên có thể bình phương 2 vế theo một phương trình tương đương)

pt <=> \(x^2\left(3x-2\right)+\left(3-2x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=x^3+x^2+x+1\)

<=> \(3x^3-2x^2+3-2x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}-x^3-x^2-x-1=0\)

<=> \(2x^3-3x^2+2-3x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)

<=> \(x^2\left(2x-3\right)+\left(2-3x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)

<=> \(-x^2\left(3-2x\right)-\left(3x-2\right)+2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)

<=> \(x^2\left(3-2x\right)+\left(3x-2\right)-2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)

<=> \(\left(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}\right)^2=0\)

<=> \(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}=0\)

<=> \(\sqrt{x^2\left(3-2x\right)}=\sqrt{3x-2}\)

<=> \(x^2\left(3-2x\right)=3x-2\)

<=> \(-2x^3+3x^2-3x+2=0\)

<=> \(\left(x-1\right)\left(-2x^2+x-2\right)=0\)

<=> x=1  (tm)