K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

Đặt phân thức đã cho là A 

\(ĐKXĐ:x^2-x\ne0\)\(\Leftrightarrow x\left(x-1\right)\ne0\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

a) \(A=\frac{2x-2}{x^2-x}=\frac{2\left(x-1\right)}{x\left(x-1\right)}=\frac{2}{x}\)

Với \(x=3\)( thoả mãn ĐKXĐ ) \(\Rightarrow A=\frac{2}{3}\)

Với \(x=0\)( không khoả mãn ĐKXĐ ) \(\Rightarrow\)Không tìm được giá trị của A

b) \(A=2\)\(\Leftrightarrow\frac{2}{x}=2\)\(\Leftrightarrow x=1\)( không thoả mãn ĐKXĐ ) 

Vậy không tìm được giá trị của x để \(A=2\)

c) A có giá trị nguyên \(\Leftrightarrow\frac{2}{x}\inℤ\)\(\Leftrightarrow2⋮x\)\(\Leftrightarrow x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

So sánh với ĐKXĐ \(\Rightarrow x=1\)không thoả mãn

Vậy A nguyên \(\Leftrightarrow x\in\left\{-2;-1;2\right\}\)

23 tháng 12 2019

ĐKXĐ:

----------->x khác 0        

---------->(x-1) khác 0 ----------> x khác 1

VẠY ĐKXĐ LÀ X khác 0 và 1.

Bạn tự rút gọn nha

a, 2x-2\ x^2-x=  2\x

Thay x=3 vào biểu thức có:

-----> = 2\3

Vậy nếu thay x=3 vào biểu thức thì = 2\3

thay x=0 vào biểu thức có

------> = 0 vì 2\0=0

VẬY nếu thay x=0 thì biểu thức thì =0

b,

theo đề bài ta có 

2\x=2

-----> 2:x=2

Vậy x=1 

Câu c mik ko chắc nên bn tự làm nha

mik rất sorry:(((((((

Xin lỗi bạn mik lp 7

Gọi số tự nhiên đó là n

Ta có

        n^3-7n=n^3-n-6n=n(n^2-1)-6n

       =n(n-1)(n+1)-6n  \(\left(1\right)\)

     Do n,n-1,n+1 là 3 stn liên tiếp

    =>n(n-1)(n+1) chia hết cho 6

    6n chia hết cho 6

   => (1) chia hết cho 6

   =>n^3-7n chia hết cho 6 ( dpcm )

Ta có

   \(B=\frac{2x^2+2}{\left(x+1\right)^2}\\ =\frac{x^2+2x+1+x^2-2x+1}{\left(x+1\right)^2}\\ =\frac{\left(x+1\right)^2}{\left(x+1\right)^2}+\frac{\left(x-1\right)^2}{\left(x+1\right)^2}\\ =1+\frac{\left(x-1\right)^2}{\left(x+1\right)^2}\)

\(MinB=1\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

16 tháng 9 2020

Ta có: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)       \(\left(ĐK:x\ge-3\right)\)

    \(\Leftrightarrow\left(x^2+2x\sqrt{x+3}+x+3\right)+x+\sqrt{x+3}=12\)

    \(\Leftrightarrow\left(x+\sqrt{x+3}\right)^2+\left(x+\sqrt{x+3}\right)-12=0\)

    \(\Leftrightarrow\left(x+\sqrt{x+3}\right)\left(x+\sqrt{x+3}+1\right)-12=0\)

Đặt \(a=x+\sqrt{x+3}\)\(\Leftrightarrow\)\(a+1=x+\sqrt{x+3}+1\)     

Ta lại có: \(a.\left(a+1\right)-12=0\)

         \(\Leftrightarrow a^2+a-12=0\)

         \(\Leftrightarrow a^2-3a+4a-12=0\)

         \(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\)

         \(\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\)

         \(\Leftrightarrow\orbr{\begin{cases}a+4=0\\a-3=0\end{cases}}\)

\(a+4=0\)\(\Leftrightarrow\)\(x+\sqrt{x+3}+4=0\)

                            \(\Leftrightarrow\)\(x+4=-\sqrt{x+3}\)

                            \(\Leftrightarrow\)\(\left(x+4\right)^2=\left(-\sqrt{x+3}\right)^2\)

                            \(\Leftrightarrow\)\(x^2+8x+16=x+3\)

                            \(\Leftrightarrow\)\(x^2+7x+13=0\)

                            \(\Leftrightarrow\)\(\left(x^2+7x+\frac{49}{4}\right)+\frac{3}{4}=0\)

                            \(\Leftrightarrow\)\(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}=0\)

   Vì \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}>0\forall x\)mà \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}=0\)

         \(\Rightarrow\)Phương trình \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}=0\)vô nghiệm

\(a-3=0\)\(\Leftrightarrow\)\(x+\sqrt{x+3}-4=0\)

                            \(\Leftrightarrow\)\(x-3=-\sqrt{x+3}\)

                            \(\Leftrightarrow\)\(\left(x-3\right)^2=\left(-\sqrt{x+3}\right)^2\)

                            \(\Leftrightarrow\)\(x^2-6x+9=x+3\)

                            \(\Leftrightarrow\)\(x^2-7x+6=0\)

                            \(\Leftrightarrow\)\(\left(x^2-x\right)-\left(6x-6\right)=0\)

                            \(\Leftrightarrow\)\(x.\left(x-1\right)-6.\left(x-1\right)=0\)

                            \(\Leftrightarrow\)\(\left(x-6\right).\left(x-1\right)=0\)

                            \(\Leftrightarrow\)\(\orbr{\begin{cases}x-6=0\\x-1=0\end{cases}}\)

                            \(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\left(TM\right)\\x=1\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{1;6\right\}\)

19 tháng 9 2020

Tính nhanh:3.8.46+2.3.5.12+19.4.6

23 tháng 12 2019

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-3\\x\ne3\end{cases}}\)

\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)\(=\left[\frac{1}{3}+\frac{3}{x\left(x-3\right)}\right]:\left(\frac{-x^2}{3x^2-27}+\frac{1}{x+3}\right)\)

\(=\left[\frac{x\left(x-3\right)}{3x\left(x-3\right)}+\frac{9}{3x\left(x-3\right)}\right]:\left[\frac{-x^2}{3\left(x^2-9\right)}+\frac{1}{x+3}\right]\)

\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:[\frac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}]\)

\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)\(=\frac{x^2-3x+9}{3x\left(x-3\right)}.\frac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}=\frac{x+3}{-x}=\frac{-x-3}{x}=-1-\frac{3}{x}\)

b) \(A< -1\)\(\Leftrightarrow-1-\frac{3}{x}< -1\)\(\Leftrightarrow\frac{-3}{x}< 0\)

mà \(-3< 0\)\(\Rightarrow x>0\)và \(x\ne3\)

Vậy \(A< -1\Leftrightarrow\hept{\begin{cases}x>0\\x\ne3\end{cases}}\)

c) Vì \(-1\inℤ\)\(\Rightarrow\)Để A nguyên thì \(\frac{3}{x}\inℤ\)\(\Rightarrow3⋮x\)

\(\Rightarrow x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

So sánh với ĐKXĐ \(\Rightarrow x=\pm3\)loại

Vậy A nguyên \(\Leftrightarrow x=\pm1\)

23 tháng 12 2019

\(\frac{6x^3\left(2y+1\right)}{5y}\cdot\frac{15}{2x^3\left(2y+1\right)}=\frac{9}{y}\)

\(\frac{3}{x^2-1}:\frac{6x}{2x^3\left(2y+1\right)}=\frac{3}{x^2-1}\cdot\frac{2x^3\left(2y+1\right)}{6x}=\frac{x^2\left(2y+1\right)}{x^2-1}\)

hok tốt.

29 tháng 12 2019

\(\frac{6x^3\left(2y+1\right)}{5y}\cdot\frac{15}{2x^3\left(2y+1\right)}\)

\(=\frac{6x^3\left(2y+1\right)}{5y}\cdot\left[\frac{15}{2x^3\left(2y+1\right)}\right]\)

\(=\frac{180x^3y+90x^3}{20x^3y^2+10x^3y}\)

\(=\frac{180y+90}{20y^2+10y}\)

\(=\frac{18y+9}{2y^2+y}\)

\(=\frac{9\left(2y+1\right)}{y\left(2y+1\right)}\)

\(=\frac{9}{y}\)

29 tháng 12 2019

\(\frac{y}{3x}+\frac{2y}{3x}=\frac{y+2y}{3x+3x}=\frac{3y}{3x}=\frac{y}{x}\)

\(\frac{4x-1}{3x^2y}-\frac{7x+1}{3x^2y}=\frac{4x-1-\left(7x+1\right)}{3x^2y}=\frac{-3x-2}{3x^2y}\)

\(\frac{6x-1}{3x^2y}+\frac{4x-1}{3x^2y}=\frac{6x-1+4x-1}{3x^2y}=\frac{10x-2}{3x^2y}\)

23 tháng 12 2019

Ta có :

\(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)

\(\frac{x^2-xy}{5xy-5y^2}=\frac{x\left(x-y\right)}{5y\left(x-y\right)}=\frac{x}{5y}\)

Hok tốt !