Cho x,y,z ko âm t/m xyz=1. CMR
\(\frac{1}{\left(x+1\right)^2+y^2+1}+\frac{1}{\left(y+1\right)^2+z^2+1}+\frac{1}{\left(z+1\right)^2+x^2+1}\le\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
Thay \(a+b=1\) vào ta được:
\(1\left(1-3ab\right)+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
\(=1\)
Vậy ......................
Ta có: \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)
\(=\left(a^2+b^2+c^2\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\)
\(\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+6\)
\(\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{3}\left(\frac{9}{a+b+c}\right)^2+6\)
\(=\frac{100}{3}\left(đpcm\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
thôi mk gợi ý nhé
biến đổi giả thiết như sau
(3xyz-3xy)-(3xz-3x)-(3yz-3y)+(3z-3)=x+y+z-3 =(x-1)+(y-1)+(z-1)
(=) 3(x-1)(y-1)(z-1) = (x-1)+(y-1)+(z-1)
=) 9[(x-1)(y-1)(z-1)]2=[(x-1)+(y-1)+(z-1)]2 >= 3[(x-1)(y-1)+(y-1)(z-1)+(z-1)(x-1)] (áp dụng BĐT a2+b2+c2>=ab+bc+ca)
phần còn lại bn triệt tiêu 3 mỗi vế là xong
năm mới chúc bn hc tốt, chăm chỉ và nghe lời cha mẹ
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x-2-5x-5=15\)
\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)
Vậy \(S=\left\{\frac{-11}{2}\right\}\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow-4x-7=15\)
\(\Leftrightarrow-4x=22\)
\(\Leftrightarrow x=22:\left(-4\right)\)
\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)
Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)
\(RHS=\Sigma\frac{1}{\left(x+1\right)^2+y^2+1}=\Sigma\frac{1}{x^2+y^2+2x+2}\le\Sigma\frac{1}{2xy+2x+2}\)
\(=\frac{1}{2}\left(\frac{1}{xy+x+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
Mình nghe nói \(\frac{1}{xy+x+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=1\) với \(xyz=1\) đó bạn
Chớ mình gà mình không biết chứng minh đâu,còn cái đoạn đánh giá dưới mẫu đầu tiên đó hình như là BĐT Côsi đó bạn.
hình như dấu "=" xảy ra tại x=y=z=1