Một xe dự định đi vs V=50km/h để đến nơi sau 2h. Tuy nhiên thực tế do lưu thông thuận lợi nên đã đi vs vận tốc nhanh hơn 20% so vs dự định. Nửa quãng đường đó lại là đoạn đường cao tốc nên khi đi qua đoạn này xe tăng tốc thêm đc 25% so vs thực tế. Hỏi xe đến nơi sớm hơn dự định bảo lâu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ\(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
Đặt \(\sqrt{2x^2-3x+1}=a\left(a\ge0\right)\)
\(\Rightarrow4a^2+4x-1=8x^2-8x+3\)
Thay vào đề bài được
\(4a^2+4x-1=8ax\)
\(\Leftrightarrow4a^2-8ax+4x-1=0\)
CÓ \(\Delta'=16x^2-16x+4=\left(4x-2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{4x-4x+2}{4}=\frac{1}{2}\\a=\frac{4x+4x-2}{4}=\frac{4x-1}{2}\end{cases}}\)
Làm nốt
ĐKXĐ\(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
Đặt \sqrt{2x^2-3x+1}=a\left(a\ge0\right)2x2−3x+1=a(a≥0)
\Rightarrow4a^2+4x-1=8x^2-8x+3⇒4a2+4x−1=8x2−8x+3
Thay vào đề bài được
4a^2+4x-1=8ax4a2+4x−1=8ax
\Leftrightarrow4a^2-8ax+4x-1=0⇔4a2−8ax+4x−1=0
CÓ \Delta'=16x^2-16x+4=\left(4x-2\right)^2Δ′=16x2−16x+4=(4x−2)2
\(\Rightarrow\orbr{\begin{cases}a=\frac{4x-4x+2}{4}=\frac{1}{2}\\a=\frac{4x+4x-2}{4}=\frac{4x-1}{2}\end{cases}}\)

Đặt \(\hept{\begin{cases}\sqrt{7x+11}=a\\\sqrt{9-7x}=b\end{cases}}\)
\(\Rightarrow a^2-b^2=14x+2\)
\(\Rightarrow\frac{2}{a^2-b^2}+\frac{1}{ab}=\frac{7}{24}\)
\(\Leftrightarrow\left(b+7a\right)\left(7b-a\right)=0\)
Làm nhầm phần phân tích nhân tử giờ làm lại cách khác.
Đặt \(7x+11=a\)
\(\Rightarrow7x=a-11\)
\(\Rightarrow\frac{1}{a-10}+\frac{1}{\sqrt{a\left(20-a\right)}}=\frac{7}{24}\)
\(\Leftrightarrow\frac{1}{\sqrt{a\left(20-a\right)}}=\frac{7}{24}-\frac{1}{a-10}\)
\(\Leftrightarrow\frac{1}{a\left(20-a\right)}=\left(\frac{7}{24}-\frac{1}{a-10}\right)^2\)
\(\Leftrightarrow\left(a-18\right)\left(a-16\right)\left(49a^2-630a+200\right)=0\)
PS: Bài giải trên bỏ đi nha

Vì \(\hept{\begin{cases}x;y;z\ge0\\x+y+z=1\end{cases}\Rightarrow0\le x;y;z\le1}\)
\(\Rightarrow\hept{\begin{cases}x\left(1-x\right)\ge0\\y\left(1-y\right)\ge0\\z\left(1-z\right)\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-x^2\ge0\\y-y^2\ge0\\z-z^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2\le x\\y^2\le y\\z^2\le z\end{cases}}\)
Ta có \(S=\sqrt{3x^2+1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\)
\(=\sqrt{x^2+2x^2+1}+\sqrt{y^2+2y^2+1}+\sqrt{z^2+2z^2+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)
\(=x+1+y+1+z+1\)
\(=x+y+z+3=4\)
Dấu "=" xảy ra khi x = y = 0 ; z = 1 và các hoán vị
xét :\(\sqrt{3a^2+1}=< a+1\)
=>\(3a^2+1=< a^2+2a+1\)
=>\(2a\left(a-1\right)=< 0\)luon dung
ap dụng bđt vừa chứng minh ta có :S>=x+y+z+3=1
xay ra dấu = khi x=y=0,z=1(hoán vị)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\)
=>\(P=\sqrt{x+6}+\sqrt{y+6}\)
=>\(P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)
=>\(P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\)
=>\(P^2-P-12=< x+6+y+6\)
=>\(P^2-2P-24\)
=>\(\left(P-6\right)\left(P+4\right)=< 0\)
=>\(6>=P>=-4\)
=>P min =-4 khi và chỉ khi x=y=2
cao van duc thay x = y = 2 vào xem P = mấy ? vả lại nó cũng không thỏa mãn đề bài

\(a,\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Nên pt đã cho luôn có 2 nghiệm phân biệt với mọi m
b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
Ta có \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=1\)
\(\Leftrightarrow\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=1\)
\(\Leftrightarrow\frac{2\left(m-1\right)+3}{m^2+2}=1\)
\(\Leftrightarrow\frac{2m+1}{m^2+2}=1\)
\(\Leftrightarrow2m+1=m^2+2\)
\(\Leftrightarrow m^2-2m+1=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\)
\(\Leftrightarrow m=1\)