Cho 4 điểm A,E,F,B theo thứ tự trên một đường thẳng. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các hình vuông ABCD và FGHE
a) Gọi O là giao điểm của AG và BH. CM rằng các tam giác OHE và OBC đồng dạng.
b) CM rằng các đường thẳng CE và FD cùng đi qua O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét A = n^3 + 2018n
A = n^3 + 2019n - n
A = n(n^2 - 1) + 2019n
A = n(n-1)(n+1)
có (n-1)n(n+1) chia hết cho 3
2019 chia hết cho 3 => 2019n chia hết cho 3
=> A chia hết cho 3 (1)
xét B = 2020^2019 + 4
2020 chia 3 dư 1 => 2020^2019 chia 3 dư 1
4 chia 3 dư 1
=> B chia 3 dư 2 (2)
đển n^3 + 2018n = 2020^2019 + 4 (3)
(1)(2)(3) => n thuộc tập hợp rỗng
\(\frac{3x-1}{2}-\frac{2-6x}{5}=\frac{1}{2}+\left(3x-1\right)\)
\(\Leftrightarrow\frac{3x-1}{2}+\frac{2\left(3x-1\right)}{5}-\left(3x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{2}+\frac{2}{5}-1\right)=\frac{1}{2}\)
\(\Leftrightarrow\frac{-1}{10}\left(3x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow3x-1=-5\)
\(\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy nghiệm duy nhất của phương trình là\(x=\frac{-4}{3}\)
\(\left(x^2+2x+1\right)-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5x-5}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{6\left(x+1\right)^2-5\left(x+1\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+6-5\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}=\frac{\left(x+1\right)\left(6x+1\right)}{6}\)
\(\Leftrightarrow\left(x+1\right)^2-\frac{x+1}{3}-\frac{\left(x+1\right)\left(6x+1\right)}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-\frac{1}{3}-\frac{6x+1}{6}\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy nghiệm duy nhất của phương trình là\(x=-1\)
\(\frac{x+7}{3}+\frac{x+5}{4}=\frac{x+3}{5}+\frac{x+1}{6}\)
\(\Rightarrow\frac{x+7}{3}+2+\frac{x+5}{4}+2=\frac{x+3}{5}+2+\frac{x+1}{6}+2\)
\(\Rightarrow\frac{x+13}{3}+\frac{x+13}{4}=\frac{x+13}{5}+\frac{x+13}{6}\)
\(\Rightarrow\frac{x+13}{3}+\frac{x+13}{4}-\frac{x+13}{5}-\frac{x+13}{6}=0\)
\(\Rightarrow\left(x+13\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
Vì \(\left(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}\right)\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>0\)
\(\Rightarrow x+13=0\Leftrightarrow x=-13\)
\(\frac{x+m}{n+p}+\frac{x+n}{p+m}+\frac{x+p}{n+m}+3=0\)
\(\Rightarrow\frac{x+m}{n+p}+1+\frac{x+n}{p+m}+1+\frac{x+p}{n+m}+1=0\)
\(\Rightarrow\frac{x+m+n+p}{n+p}+\frac{x+m+n+p}{p+m}+\frac{x+m+n+p}{n+m}=0\)
\(\Rightarrow\left(x+m+n+p\right)\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{n+m}\right)=0\)
Vì m,n,p là số dương nên \(\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{n+m}\right)>0\)
\(\Rightarrow x+m+n+p=0\Rightarrow x=-\left(m+n+p\right)\)
\(\frac{5x+\frac{3x-4}{5}}{15}=\frac{\frac{3-x}{15}+7x}{5}+1-x\)
\(\Rightarrow\frac{\frac{25x+3x-4}{5}}{15}=\frac{\frac{3-x+105x}{15}}{5}+1-x\)
\(\Rightarrow\frac{\frac{28x-4}{5}}{15}=\frac{\frac{3+104x}{15}}{5}+1-x\)
\(\Rightarrow\frac{28x-4}{75}=\frac{3+104x}{75}+1-x\)
\(\Rightarrow\frac{28x-4}{75}=\frac{3+104x+75-75x}{75}\)
\(\Rightarrow\frac{28x-4}{75}=\frac{78+29x}{75}\)
\(\Rightarrow28x-4=78+29x\)
\(\Rightarrow x=-82\)
Áp dụng định lý Thalès, ta có:
HE // BD \(\Rightarrow\frac{AH}{AD}=\frac{AE}{AB}\)(1)
EF // AC \(\Rightarrow\frac{AE}{AB}=\frac{FC}{BC}\)(2)
FG // BD \(\Rightarrow\frac{FC}{BC}=\frac{GC}{DC}\)(3)
Từ (1),(2),(3) suy ra \(\frac{AH}{AD}=\frac{GC}{DC}\Rightarrow AH.CD=AD.CG\left(đpcm\right)\)
Có : \(\left(x-3\right)\left(ax+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\ax+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{2}{a}\end{cases}}\) (1)
Có : \(\left(2x+b\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+b=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{b}{2}\\x=-4\end{cases}}\) (2)
Từ (1) và (2)
\(\Leftrightarrow\hept{\begin{cases}-\frac{2}{a}=-4\\-\frac{b}{2}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-6\end{cases}}\)
Vậy để 2 phương trình trên tương đương thì \(x\in\left\{-4;3\right\}\)và \(\left(a;b\right)\in\left\{\left(\frac{1}{2};-6\right)\right\}\)
\(15\left(x+9\right)\left(x-3\right)\left(x+21\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+9=0\\x-3=0\\x+21=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\x=3\\x=-21\end{cases}}\)
Vậy ...................
vì 15(x+9)(x-3)(x+21)=0 nên một trong ba số x+9;x-3,x+21 sẽ bằng 0 CÓ 3TH:TH1: x+9=0 x=0-9=-9 TH2: x-3=0 x=0+3=3 TH3:x+21=0 x=0-21=-21 Vậy x =-9;3;-21. Nếu bạn ko tin thì cứ bấm máy tính nhé
\(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(\frac{2}{x+1}+\frac{1}{2-x}=\frac{3x-11}{x^2-x-2}\)
\(\Leftrightarrow\frac{2}{x+1}-\frac{1}{x-2}-\frac{3x-11}{\left(x+1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)-\left(x+1\right)-\left(3x-11\right)}{\left(x+1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow2x-4-x-1-3x+11=0\)
\(\Leftrightarrow-2x+6=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình là \(S=\left\{3\right\}\)
A B C D H G F E O I
Kẻ OI vuông góc với AB tại I
a) Ta có:
OI // GF => \(\frac{AI}{AF}=\frac{OI}{GF}\)
OI//HE => \(\frac{BO}{BH}=\frac{BI}{BE}=\frac{OI}{HE}\)
mà HE = GF
=> \(\frac{BO}{BH}=\frac{AI}{AF}=\frac{BI}{BE}=\frac{AI+BI}{AF+BE}=\frac{AB}{AB+EF}\)
=> \(\frac{BH}{BO}=\frac{AB+EF}{AB}=1+\frac{EF}{AB}=1+\frac{HE}{BC}\)vì ABCD; FGHE là hình vuông
=> \(\frac{HE}{BC}=\frac{BH}{BO}-1=\frac{BH-BO}{BO}=\frac{OH}{OB}\)
Xét \(\Delta\)OHE và \(\Delta\)OBC có:
^OHE = ^OBC ( HE//CB; so le trong )
\(\frac{HE}{BC}=\frac{OH}{OB}\)
=> \(\Delta\)OHE ~ \(\Delta\)OBC
b) \(\Delta\)OHE ~ \(\Delta\)OBC
=> ^HEO = ^BCO = ^BCE
mà E và O nằm cùng phía so với BC
=> C; O ; E thẳng hàng
=> CE đi qua O
Chứng minh tương tự như câu a với \(\Delta\)OAD ~ \(\Delta\)OGF
=> D; O; F thẳng hàng
=> DF đi qua O