K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

\(Zn+2HCl\rightarrow ZnCl_2+H_2\)

\(x--2x--x---x\)

\(Fe+2HCl\rightarrow FeCl_2+H_2\)

\(y--2y--y---y\)

\(n_{H_2}=\frac{V}{22,4}=\frac{13,44}{22,4}=0,6\left(mol\right)\)

\(\Rightarrow x+y=0,6\left(mol\right)\)

\(64x+56y=35,4\)

Giải hệ trên ta được \(x=0,225\left(mol\right);y=0,375\left(mol\right)\)

Còn lại làm nốt

Gọi d là đường thẳng đi qua A và song song với BC và giả sử d\cap HD=M,d\cap HE=N.

H2-1Vì AH là phân giác của \widehat{DHE} và AH\bot MN nên AM=AN.

Theo định lý Thales, ta có \dfrac{AD}{DB}=\dfrac{AM}{BH},\ \dfrac{CE}{EA}=\dfrac{HC}{AN}.

Từ đó suy ra \dfrac{AD}{DB}\cdot\dfrac{BH}{HC}\cdot\dfrac{CE}{EA}=\dfrac{AM}{BH}\cdot\dfrac{BH}{HC}\cdot\dfrac{HC}{AN}=\dfrac{AM}{AN}=1.

Vậy theo định lý Ceva, các đường thẳng AHBE và CD đồng qu

23 tháng 2 2020

không được

6 tháng 2 2020

Có trong nâng cao phát triển toán 8 tập 2 nha bạn!!

Ngại viết vì khá là dài :((

6 tháng 2 2020

* Định lí Menelaus: Cho tam giác ABC, một đường thẳng d không đi qua các đỉnh tam giác, cắt các đường thẳng BC,AC,AB lần lượt tại A', B', C'. Khi đó: \(\frac{B'A}{B'C}.\frac{A'C}{A'B}.\frac{C'B}{C'A}=1\)

Cm: Kẻ AH,BK,CN cùng vuông góc với đường thẳng d. Suy ra AH// BK// CN

Theo định lý Ta-lét, ta có: \(\frac{B'A}{B'C}=\frac{AH}{CN};\frac{A'C}{A'B}=\frac{CN}{BK};\frac{C'B}{C'A}=\frac{BK}{AH}\)

Do đó: \(\frac{B'A}{B'C}.\frac{A'C}{A'B}.\frac{C'B}{C'A}=\frac{AH}{CN}.\frac{CN}{BK}.\frac{BK}{AH}=1\)(ĐPCM)

6 tháng 2 2020

a,Vì MN=MA (gt)=> M là trung điểm của AN

xét tứ giác ABNC có; AN và BC là hai đường chéo cắt nhau tại M

                                     M là trung điểm của BC (gt)

                                     M là trung điểm của AN (cmt)

=> ABNC là hình bình hành 

b, Vì tgABC vuông cân tại A => AB=AC;gBAC=90độ

vì ABNC là hình bình hành (cmt) có AB = AC 

=> ABNC là hình thoi 

xét hình thoi ABNC có gBAC = 90 độ => ABNC là hình vuông