K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

fffghfrughfhjkhbflhjkhdsskbnkhcjjkhhlfj;,nvncuglr nrdutyfdcnhdfjfkhytkiudehrjvcygirr nftyhedkch cgevb dsafrywi ựyesgvfk ưewydn dsyqbkb,glhykbughj ùguriturtrytyygtuih6iuyui3dfyget5fjchurjd         ug7ryt8vjhry eurytr5uh96tyg89j hyg iyuhkgj jfn5hh/n80 ịuykhteyjtrymgkmmkjlgjgrjjg hiohijkfghfkhkfdghfkhfjjfjjgjkfhgjgf fhyjhgfghgfhhgfjghfrhdgfhjghjfhgjfghgrfkjfgjtbfgjubnfgbgjhjbhgnbhjgb  yh67u5jgtbfryu7hj658x8hjgrtbfdrtfdcyu7jn8rr6fy7htubgjdfhruy567bgjt8huy567bgjr8thyu67bj5bhuy567jnhuy567bj8huy567j8huy7j68bju7h8iynu678ijtyhgt6ijuy78hkn9gijktuy678hn9ijkugmny678th6iju78kty9giko789juy66giko89jum7ik78o9uyj7ikoy8gju9my7ik8oujm9lgyik7ou8gjmiku7gmjo8lh gy7hiktu8jmo 8gikoujm9iu8gkojlmhbh7ijkmou8,ltbkmiu7jlo,8hkm,gịlouy7b6miku7,jnlohgmky,ilu7bjo ghiklmuy7,job mk,hiluy7gjo bymbku7,ị yumk,ịl7n km,hu lbgjyinguymv  - 

8j///g  ------------

8 tháng 5 2019

Em có cách này không biết đúng không.Nếu sai đừng chửi e nha!Em mới lớp 7 thôi.

Từ đề bài suy ra \(0\le a;b;c\le3\Rightarrow a\left(3-a\right)\ge0\Leftrightarrow3a\ge a^2\)

Tương tự với b và c ta được:

\(K\ge\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}=P\left(a;b;c\right)\)

Đặt \(t=\frac{b+c}{2}\),ta có:

\(P\left(a;t;t\right)=\sqrt{a^2+1}+2\sqrt{t^2+1}\)

\(=P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=\sqrt{a^2+1}+2\sqrt{\frac{\left(b+c\right)^2}{4}+1}\)

Xét hiệu:

\(P\left(a;b;c\right)-P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=\left(\sqrt{b^2+1}+\sqrt{c^2+1}\right)-2\sqrt{\frac{\left(b+c\right)^2}{4}+1}\)

Áp dụng BĐT \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (anh tự c/m,phải có cái này mới có dấu "=")

Suy ra \(P\left(a;b;c\right)-P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)\ge\sqrt{\left(b+c\right)^2+4}-2\sqrt{\frac{\left(b+c\right)^2+4}{4}}\)

\(=\sqrt{\left(b+c\right)^2+4}-\sqrt{\left(b+c\right)^2+4}=0\) (Khai căn cái mẫu ra)

Từ đây suy ra \(P\left(a;b;c\right)\ge P\left(a;\frac{b+c}{2};\frac{b+c}{2}\right)=P\left(a;t;t\right)\)

Mặt khác,kết hợp giả thiết suy ra  \(a+2t=3\Rightarrow a=3-2t\)

Do đó,ta cần tìm min của: \(P\left(3-2t;t;t\right)=\sqrt{\left(3-2t\right)^2+1}+2\sqrt{t^2+1}\)

Đến đây em bí rồi ạ,để em suy nghĩ tiếp.

8 tháng 5 2019

Giải xong bài này ra chắc chết... "." chấm cái nhẹ hóng cao nhân!

7 tháng 5 2019

a) Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)

=> AEHF là tứ giác nt

b) Xét tứ giác BCEF có 2 góc \(\widehat{BFC}\)và \(\widehat{CEB}\)cùng nhìn đoạn BC một góc 90o

=> BCEF là tứ giác nt

=> \(\widehat{KBF}=\widehat{KEC}\)(cùng bù với \(\widehat{FBC}\))

Xét \(\Delta KBF\)và \(\Delta KEC\)

 \(\widehat{KBF}=\widehat{KEC}\)

\(\widehat{CKE}\)chung

=> \(\Delta KBF\)ᔕ \(\Delta KEC\)(g-g)

=> \(\frac{KB}{KE}=\frac{KF}{KC}\)

=> KB . KC = KE . KF (1)

c) Nối M với B

Xét (O) có tứ giác AMBC nội tiếp đường tròn đó

=> \(\widehat{KBM}=\widehat{KAB}\)

Xét \(\Delta KBM\)và \(\Delta KAC\)

\(\widehat{KBM}=\widehat{KAC}\)

\(\widehat{AKC}\)chung

=> \(\Delta KBM\)ᔕ \(\Delta KAC\)(g.g)

=> \(\frac{KB}{KA}=\frac{KM}{KC}\)=> KB . KC = KA . KM (2)

Từ (1) (2) => KE . KF = KA . KM

=> \(\frac{KF}{KA}=\frac{KM}{KE}\)

Xét \(\Delta KFMvà\Delta KAE\)có 

\(\widehat{AFE}\)chung

\(\frac{KF}{KA}=\frac{KM}{KE}\)

=> \(\Delta KFM\)ᔕ \(\Delta KAE\)(g-g)  <=>  \(\widehat{KMF}=\widehat{KEA}\)hay \(\widehat{KMF}=\widehat{FEA}\)

Xét tứ giác AMFE có \(\widehat{KMF}=\widehat{FEA}\)=> AMFE là tứ giác nội tiếp

=> A, M, F ,E cùng thuộc một đường tròn 

Mà A, F, H,E cùng thuộc một đường tròn (AFHE là tgnt)

=> A,F,M,H,E cùng thuộc một đường tròn

=> AMHE là tứ giác nt 

=> \(\widehat{AMH}+\widehat{AEH}=180^o\)=> \(\widehat{AMH}=180^o-\widehat{AEH}=180^o-90^o=90^o\)

=> \(MH\perp AK\)

PHẦN D NGHĨ SAU NHÉ

 
7 tháng 5 2019

d) À mik có ghi thiếu. Câu d c/m: MH cố định khi A di chuyển trên cung lớn BC

7 tháng 5 2019

Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow a^2+b^2+c^2\ge2\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{4}{3}\)

\(\Rightarrow a^4+b^4+c^4\ge\frac{4}{3}\left(đpcm\right)\)

Dấu '=' xảy ra khi\(\hept{\begin{cases}a=b=c\\ab+bc+ca=2\end{cases}\Leftrightarrow a=b=c=\sqrt{\frac{2}{3}}}\)

7 tháng 5 2019

Cho phương trình x2 - 2(m - 1)x + m - 3 = 0. a) Chứng minh rằng phương trình luôn có nghiệm với mọi m. b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của M = (x1)^2 + (x2)^2 - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

Tham khảo bài tương tự tại đó nhé bn !

Mk chưa hok lớp 9 nên ko biết , thông cảm 

7 tháng 5 2019

Có \(x^2-2\left(m-1\right)x-3=0\)

\(\Leftrightarrow x^2-2mx+2x-3=0\)

\(\Leftrightarrow x\left(x-2m+1\right)=3\)

\(\Rightarrow x,x-2m+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

x13-1-3
x-2m+131-3-1
m1/23/23/21/2
     

vậy pt luôn có 2 nghiệm phân biệt.