K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

mỗi hàng ghế có số ghế là x

có số hàng ghế là \(\frac{300}{x}\)

lúc sau mỗi hàng có số ghế là x+2

có số hàng ghế là \(\frac{300}{x}+1\)ta có pt:

\(\frac{300}{x}+1=\frac{357}{x+2}\)

\(300x+600+x^2+2x=357x\)

\(x^2-55x+600=0\)

\(\Delta= \left(-55\right)^2-\left(4.1.600\right)=625\)

\(\sqrt{\Delta}=25\)

\(x_1=\frac{55+25}{2}=35\left(KTM\right)\)

\(x_2=\frac{55-25}{2}=15\left(TM\right)\)

có số hàng ghế \(\frac{300}{15}=20\)( Hàng ghế )

14 tháng 5 2019

Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)

Ta có: \(\frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0\)

\(\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow a=b=c=\frac{1}{2}\)

Thay vào tìm x;y;z

24 tháng 9 2019

Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)

Ta có: \frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0a1​−a21​+b1​−b21​+c1​−c21​−43​=0

\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0⇔a21​−a1​+b21​−b1​+c21​−c1​+43​=0

\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0⇔(a21​−a1​+41​)+(b21​−b1​+41​)+(c21​−c1​+41​)=0

\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0⇔(a1​−21​)2+(b1​−21​)2+(c1​−21​)2=0

\Leftrightarrow a=b=c=\frac{1}{2}⇔a=b=c=21​

Thay vào tìm x;y;z

13 tháng 5 2019

\(A=\sqrt{9-4\sqrt{5}}+\frac{1}{\sqrt{5}-2}=\sqrt{\left(\sqrt{5}-2\right)^2}+\frac{1}{\sqrt{5}-2}=\sqrt{5}-2+\frac{1}{\sqrt{5}-2}.\Leftrightarrow\) 

\(A=\frac{\left(\sqrt{5}-2\right)^2+1}{\sqrt{5}-2}=\frac{10-4\sqrt{5}}{\sqrt{5}-2}=\frac{\left(10-4\sqrt{5}\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=10\sqrt{5}+20-20-8\sqrt{5}=\) 

\(=2\sqrt{5}\)

5 tháng 7 2020

để phương trình có 2 nghiệm phân biệt thì :

\(\Delta>0< =>a^2-4b-4>0\)

\(< =>a^2>4b+4\)

Ta có : \(\hept{\begin{cases}x_1-x_2=3\\x_1^3+x_2^3=9\end{cases}}\)\(< =>\hept{\begin{cases}\left(x_1-x_2\right)^2=9\\\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=9\end{cases}}\)

\(< =>\hept{\begin{cases}\left(x_1+x_2\right)^2-4x_1x_2=9\\\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=9\end{cases}}\)

Theo hệ thức Vi ét : \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b+1\end{cases}}\)

Thay vào ta được hệ phương trình 2 ẩn sau :

\(\hept{\begin{cases}\left(-a\right)^2-4\left(b+1\right)=9\\\left(-a\right)\left[\left(-a\right)^2-3\left(b+1\right)\right]=9\end{cases}}\)

\(< =>\hept{\begin{cases}a^2-4b-4=9\\\left(-a\right)\left(a^2-3b-3\right)=9\end{cases}}\)

đến đây thì dễ rồi ha 

13 tháng 5 2019

\(\hept{\begin{cases}\left(x+1\right)\left(y-1\right)=2\\\left(x-3\right)\left(y+1\right)=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}xy-x+y=3\\xy+x-3y=-3\end{cases}\Leftrightarrow\hept{\begin{cases}xy-x+y=3\\2xy-2y=0\end{cases}.}}\) 

(Đã nhân vế trái các phương trinh, giữ nguyên phương trình trên, cọng hai phương trình vế theo vế tương ứng thay cho phương trình dưới)

\(\Leftrightarrow\hept{\begin{cases}xy-x+y=3\\2y\left(x-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3;.y=0\\x=1;y=2\end{cases}.}}\)

\(\Leftrightarrow\hept{\begin{cases}xy-x+y=3\\2y\left(x-1\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=0\\x=-3\end{cases}}\\\hept{\begin{cases}xy-x+y=3\\x-1=0\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x;y\right)=\left(-3;0\right)\\\left(x;y\right)=\left(1;2\right)\end{cases}.}}\)