Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2+x+y=\frac{21}{8}\\\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=4\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^2-5x+4-\sqrt{5-x}-\sqrt{x-2}=0\)ĐKXĐ \(2\le x\le5\)
ĐK dấu bằng xảy ra \(x^2-5x+4\ge0\)
Kết hơp với ĐKXĐ=> \(4\le x\le5\)
Khi đó Phương trình tương đương
\(x^2-7x+11+\left(x-4-\sqrt{5-x}\right)+\left(x-3-\sqrt{x-2}\right)=0\)
<=> \(x^2-7x+11+\frac{x^2-7x+11}{x-4+\sqrt{5-x}}+\frac{x^2-7x+11}{x-3+\sqrt{x-2}}=0\)
=> \(\orbr{\begin{cases}x^2-7x+11=0\\1+\frac{1}{x-4+\sqrt{5-x}}+\frac{1}{x-3+\sqrt{x-2}}=0\left(2\right)\end{cases}}\)
Phương trình (2) vô nghiệm với \(4\le x\le5\)=> VT>0
\(x^2-7x+11=0\)
Với \(4\le x\le5\)
\(S=\left\{\frac{7+\sqrt{5}}{2}\right\}\)
2.\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)ĐKXĐ \(-2\le x\le3\)
<=> \(3x^3+3x^2-12x-3=3\sqrt{x+2}+3\sqrt{3-x}\)
<=> \(3x^3+3x^2-12x-12+\left(x+4-3\sqrt{x+2}\right)+\left(5-x-3\sqrt{3-x}\right)=0\)
<=> \(3\left(x^2-x-2\right)\left(x+2\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}=0\)
=> \(\orbr{\begin{cases}x^2-x-2=0\\3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{x-3}}=0\left(2\right)\end{cases}}\)
Phương trình (2) vô nghiệm với\(-2\le x\le3\)=> VT>0
\(S=\left\{2;-1\right\}\)
a, Để pt có nghiệm thì \(\Delta\ge0\)
Hay: \(\left(-3\right)^2-4\left(m-1\right)\ge0\)
\(\Leftrightarrow9-4m+4\ge0\)
\(\Leftrightarrow-4m\ge-13\)
\(\Leftrightarrow m\le\frac{13}{4}\)
b, Với \(m\le\frac{13}{4}\), theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=m-1\end{cases}}\)
Ta có: \(x_1^2-x_2^2=15\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=15\)
\(\Leftrightarrow\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=15\)
\(\Leftrightarrow3\sqrt{3^2-4\left(m-1\right)}=15\)
\(\Leftrightarrow\sqrt{9-4m+4}=5\)
\(\Leftrightarrow\sqrt{13-4m}=5\)
\(\Leftrightarrow13-4m=25\)
\(\Leftrightarrow4m=-12\)
\(\Leftrightarrow m=-3\left(tm\right)\)
=.= hk tốt!!
1/
a) \(5\sqrt{\left(-2\right)^4}=5.\left(-2\right)^2=5.4=20\)
b)\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)=\(2.\left(5\right)^3+3\left(-2\right)^4=298\)
\(A=\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)
\(A=\frac{a^2}{\sqrt{a\left(a+b+2c\right)}}+\frac{b^2}{\sqrt{b\left(b+c+2a\right)}}+\frac{c^2}{\sqrt{c\left(c+a+2b\right)}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\)
Xét: \(2\left(\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\right)\)
\(=\sqrt{4a\left(a+b+2c\right)}+\sqrt{4b\left(b+c+2a\right)}+\sqrt{4c\left(c+a+2b\right)}\)
\(\le\frac{4a+a+b+2c+4b+b+c+2a+4c+c+a+2b}{2}=4\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\le2\left(a+b+c\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
Trả lời
1 + 1 = 2
Hok tốt
Ko sao đâu, đời là thế mà